ReFuel 2021

International Workshop on the Application of Carbon-neutral Fuel

September 9, 2021

ReFuel 2021 International Workshop on the Application of Carbon-neutral Fuel

Organized by

Supported by

Thomas Koch, Choongsik Bae (eds.) and 5 authors

Preface

Dear colleagues,

It was great for us to host ReFuel 2021 as an on-line workshop. We are pleased to bind and distribute the presentations by six worldrenowned specialists who volunteered to contribute the active discussion on carbon-neutral future transportation. This workshop subject on carbon-neutral fuel was motivated by the position paper issued by IASTEC. This workshop enlightened scientific, reasonable, and balanced view points.

We believe the workshop provided the window for the global opinion exchange and ignited further discussions on the optimal passage to carbon neutrality. This workshop attracted more than 250 participants from 17 countries.

We appreciate contributors and hope the proceedings to be an useful literature.

We wish you all the best and health.

Organization Committee

Prof. Dr. sc. techn. Thomas Koch (General chair) Prof. Dr. Choongsik Bae (Program chair) Dr.-Ing. Amin Velji Dr.-Ing. Olaf Toedter Dr.-Ing. Heiko Kubach Prof. Dr. Yasuo Moriyoshi Dr. Wooyeong Kim

ReFuel 2021

International Workshop on the Application of Carbon-neutral Fuel September 9, 2021. Free registration . Online meeting (Zoom)

ReFuel2021 will bring together academics, research, and industrial experts in the field of energy and environment mainly in the field of fuel processing and transportation.

This workshop aims to promote scientific information exchange and discussions between researchers, developers, and practitioners to achieve reasonable carbon-neutral energy supply chain for transportation with well-balanced view and analyses.

Committees

Contact	Prof. Choongsik Bae			
	Diversal association of sustainable Drivetrain and vehicle technology research (under foundation)	KSAE		
Organized by	Supported by	\sim		
12:10 (CEST) 19:10 (FET)	Closing remark	Thomas Koch (KIT)		
11: 50	Panel Discussion			
11:25	Mobile Carbon Capture (MCC)	Esam Hamad (Saudi Aramco, Saudi Arabia)		
	Session chair: Choongsik Bae (KAIST)	chefnical leen.		
11:00	An Efficient Way of e-fuel Production	Seok Ki Kim (KRICT: Korea Research Inst. of Chemical Tech)		
10:35	E-fuel contribution via R&D in Finland	Martti Larmi (Aalto Univ., Finland)		
10:10	Japanese policy for carbon neutrality and e-fuel	Akiteru Maruta (Technova Inc., Japan)		
	Session chair: Olaf Toedter (KIT)			
09:35	Statistics and Physics of the Transition of Energy and Mobility Systems in Europe	Frank Atzler (TU Dresden, Germany)		
09:10	Perspectives of ReFuel	Thomas Koch (KIT, Germany)		
09:00 (CEST) 16:00 (FET)	Opening remark	Choongsik Bae (KAIST)		
rogram	Session chair: Amin Velji (KIT)			
Program				
General Chair Program Chair	Prof. Thomas Koch, Karlsruhe Institute of Technolo Prof. Choongsik Bae, Korea Advanced Inst. of Scier	gy (KIT), Germany nce and Tech. (KAIST), Korea		
General Chair	Prof Thomas Koch Karlsruha Institute of Tachnolo	av (KIT) Cormany		

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea E-mail: csbae@kaist.ac.kr | Mobile: +82-10-9095-5044

Contents

Perspectives of ReFuel 1	
Thomas Koch, Karlsruhe Institute of Technology, Germany	
Statistics and physics of the transition of energy and mobility systems in Europe 20)
Frank Atzler, TU Dresden, Germany	
Japanese policy for carbon neutrality and e-fuel	1
Akiteru Maruta, Technova Inc., Japan	
E-fuel contribution via R&D in Finland 44	1
Martti Larmi, Aalto University, Finland	
An efficient way of e-fuel production 64	1
Seok Ki Kim, Korea Research Institute of Chemical Technology, Korea	
Mobile Carbon Capture (MCC)	9
Esam Hamad, Saudi Aramco, Saudi Arabia	

ReFuel 2021

Perspectives of ReFuel

Thomas Koch Karlsruhe Institute of Technology

About the speaker:

- Director of Institute of Internal Combustion Engines (IFKM) at KIT, Germany
- PhD at ETH Zurich
- Professional career at Daimler AG

Perspectives of reFuels? I A critical assessment of our discussions and suggestions

T. Koch + reFuels-Team

IASTEC September 1st, 2021

KIT – The Research University in the Helmholtz-Association

www.kit.edu

Overview

- 1 IPCC Guideline
- 2 Why reFuels?
- 3 Why IASTEC?
- 4 Critical discussion?
- 5 Summary

2 08.09.2021

2018: IPCC report "Global warming of 1.5°C "

Summary of A.1: Between 2030 and 2052, global warming will reach 1.5°C if it continues to increase at the current rate!

3 08.09.2021 Are low carbon reFuels a solution – a reFuels assessment

Prof. Dr. sc. techn. Thomas Koch

Institute of internal combustion engine research

2018: Total CO₂ budget

C.1.3 Limiting global warming requires limiting the total cumulative global anthropogenic emissions of CO₂ since the preindustrial period, that is, staying within a total carbon budget (*high confidence*)¹³ By the end of 2017, anthropogenic CO₂ emissions since the pre-industrial period are estimated to have reduced the total carbon budget for 1.5°C by approximately 2200 ± 320 GtCO₂ (*medium confidence*). The associated remaining budget is being depleted by current emissions of 42 ± 3 GtCO₃ per year (*high confidence*). The choice of the measure of global temperature affects the estimated remaining carbon budget. Using global mean surface air temperature, as in ARS, gives an estimate of the remaining carbon budget of 580 GtCO₃ for a 50% probability of limiting warming to 1.5°C, and 420 GtCO₃ for 66% probability. *(medium confidence*).¹⁴ Alternatively, using GMST gives estimates of 770 and 570 GtCO₃, for 50% and 66% probabilities.¹⁵ respectively (*medium confidence*). Uncertainties in the size of these estimated remaining carbon budgets are substantial and depend on several factors. Uncertainties in the climate response to CO₂ and non-CO₂ emissions contribute ±400 GtCO₃ and the level of historic warming contributes ±250 GtCO, (*medium confidence*). Potential additional carbon release from future permafrost thawing and methane release from wetlands would reduce budgets by up to 100 GtCO₃ over the course of this century and more thereafter (*medium confidence*). In addition, the level of non-CO₂ mitigation in the future could alter the remaining carbon budget by 250 GtCO₄ in either direction (*medium confidence*). 11.24, 2.22, 2.6.1, Table 2.2, Chapter 2 Supplementary Material}

https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf

Summary of C.1.3: Limiting total cumulative global anthropogenic CO₂ emissions is essential to limiting global warming. A budget of 420 Gt CO₂ has a 66% probability of limiting 1.5°C warming.

11.12.2019: EU Green Deal

A key message of the EU Green Deal: by summer 2020, the Commission will present a plan to raise the greenhouse gas emissions reduction target to at least 50% by 2030 and a target of 55% compared to 1990.

5 08.09.2021

Are low carbon reFuels a solution - a reFuels assessment

17.12.2019: Federal Law of the BMU

2520 Bundesgesetzblatt Jahrgang 2019 Teil I Nr. 48, ausgegeben zu Bonn am 17. Dezember 2019

Anlage 2 (zu § 4)

Zulässige Jahresemissionsmengen											
Jahresemissionsmenge in Mio. Tonnen CO ₂ -Äquivalent	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Energiewirtschaft	280		257								175
Industrie	186	182	177	172	168	163	158	154	149	145	140
Gebäude	118	113	108	103	99	94	89	84	80	75	70
Verkehr	150	145	139	134	128	123	117	112	106	101	95
Landwirtschaft	70	68	67	66	65	64	63	61	60	59	58
Abfallwirtschaft und Sonstiges	9	9	8	8	7	7	7	6	6	5	5

Implementation in the form of the Federal Climate Protection Act envisions a reduction in CO₂ equivalent emissions from the transportation sector of approximately 37% in 2030 compared to 2020.

Institute of internal combustion engine research

Prof. Dr. sc. techn. Thomas Koch

2018: IPCC report "Global warming of 1.5°C "

https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf

Summary of IPCC: A remaining CO₂-budget of 420 Gt CO₂ has a 66% probability of limiting 1.5°C warming.

7 08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

2016: Renewable energy directive

Overview

- IPCC Guideline
- 2 Why reFuels?
- 3 Why IASTEC?
- 4 Critical discussion?
- 5 Summary

9 08.09.2021

Are low carbon reFuels a solution - a reFuels assessment

Project reFuels

Additional Information

- Industry partners and Baden-Württemberg invested 20.Mio € into refuels project.
- Ministry of transport of Baden-Württemberg is initiating political partner of refuels project.
- Project start was 1/2019.

Institute of internal combustion engine research

The first phase ends in 2021.

Prof. Dr. sc. techn. Thomas Koch

 More than 20 industry partners are involved with an unique contribution by automobile as well as mineral oil industry

The reFuels project is combining basic academic research questions with major environmental, industry as well as society issues.

11 08.09.2021 Are low carbon reFuels a solution – a reFuels assessment

Why reFuels project? 50 Vehicles with Internal Combustion Engine after 10 years [Miio. Vehicles] 36 million vehicles with 45 i.c.engine after 10 years with 50% BEV share of sale 40 35 30 25 20 15 10 5 0 5% 10% 20% 30% 40% 50%

Proportion of BEV share of sales for a duration of 10 years

Boundary conditions and analysis

- The KBA Data from 2009 to 2019 act as reverence for the next decade.
- PHEV as well as HEV are also vehicles with internal combustion engine.
- Even with a 50% BEV share of sales in Germany, there would be more than one million new vehicles per year with internal combustion engine.
- BEV are a part of the solution, but not the only solution.

It is completely independent from political decisions and market response: most of total fleet vehicles will have an internal combustion engine in the year 2030.

12 08.09.2021 Are low carbon reFuels a solution – a reFuels assessment

reFuels recommendation for 2030

A fuel CO₂-reduction potential of 25% can be realized within todays fleet compatible fuel specification. MTG or paraffinic diesel refuel can be produced via different routes (bioFuel, eFuel).

13 08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Information

Institute of internal combustion engine research

Prof. Dr. sc. techn. Thomas Koch

- Compatibility of Gasoline reFuel seems to be more challenging than diesel to enable fleet compatibility according to EN228/EN590.
- However, a compatibility with EN228/EN590 up to 50% CO₂ reduction potential by increased reFuels blending rate is realistic.
- A mid-term >90% CO₂-reduction by fuels within the next 25 years together with additional technology development enables a reduction of CO₂-footprint of traffic sector by >95%.

Even todays technology can be compatible with 100% refuel content. A mid-term 100% fleet compatible substitution of fossil fuels by reFuels is necessary. A step-by-step increase of the drop-in rate is recommended.

14 08.09.2021 Are low carbon reFuels a solution – a reFuels assessment

China 🛛

China is following the refuels path.

Karlsruher Institut für Technolog

Information

- China has published a long term strategy with internal combustion engine technology.
- There is not only one solution for the future:

15 08.09.2021 Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

Overview

- 1 IPCC Guideline
- 2 Why reFuels?
- 3 Why IASTEC?
- 4 Critical discussion?
- 5 Summary

16

WKM: German scientific association: first and second position paper

08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

IASTEC

The International Association of Sustainable Direntration and Vehicle Technology Research, IASTEC (in the process of founding) is an international association of professor and researchers working on vehicle and drivetrain research at famous universities. The purpose of IASTEC is to promote science, research and teaching in the field of Vehicle and drivetrain internology.

ZAMM Publication

DOL xxy/xxx	and the second	Based on $f_{1} = ax_{1}$, $\Delta f = a\Delta x$ and $M(x_{1}) = f_{1}/2$, this result may be decomposed into
		Successfully $f_0 = u_{00} (\Delta f) = u_{00} (\Delta f) = u_{00} (\Delta f) = u_{00} (\Delta f)$
ARTICLE TYPE		$\Delta F(x, \Delta x) = M(x_0)\Delta x + \frac{1}{2}\Delta x + \frac{1}{2}\Delta x.$
The averaging bias	- a standard miscalculation, which extensively	With this example in mind it becomes clear, that the average $M(x_0)$ multiplied by Δx as an estimator for $\Delta F(x, \Delta x) \approx M(x_0)\Delta x$, produces an erroneous result, because the terms $f_0\Delta x/2$ and $\Delta f\Delta x/2$ have been neglected.
underestimates real	CO ₂ emissions	
	2	4 + DISCUSSION AND CONCLUSION
Thomas Koch ^{#1} Thomas Böl	hike ²	For the calculation of CO ₂ emissions of additional electric energy demand, insufficient simplified mathematic models ically used, which might be motivated by the complexity of the electricity supply sources and the grid situation. An for systematic demonstration of the electricity supply sources and the grid situation. An
Institute of Internal Combustion Engines Research (EKM), Kartershe Institute of Technology (KII), Germany	Summary	to such a simplified tomata to analyze the analogue CO ₂ emissions per time mervin $\Delta P(D,D)$ cannot by additional power ΔD (unit: Watt) is the direct utilization of the average CO ₂ emission footprint $M(D)$ (unit g _{CO2} /Wb) for a giver electricity domand D of the electricity sector by the equation
Institute of Engineering Mechanics (ITM),	The substitution of energy based on fossil fuels in different sectors like household or	$\Delta F(\hat{D}, \Delta D) \approx M(\hat{D})\Delta D$,
Karisruhe Institute of Technology (KIT), Germany	traffic by electric energy saves CO ₂ of this specific sector due to decreased fossil fuel consumption. An important quantity is the additional CO ₂ emission $\Delta F(\tilde{D}, \Delta D)$ due	which corresponds to the simplified formula introduced in section 3, (see equation (20)). As shown in section 3, the 5 integral would be the exact formulation
Corr espondence	to an increased electric power demand ΔD for the average electricity power demand	DeaD
Thomas Koch	D. Commonly, the formula $\Delta F(D, \Delta D) \approx M(D)\Delta D$ is used (called simplified for-	$\Delta F(\overline{D}, \Delta D) = \int f(D) dD.$
and an	mula), where $M(D)$ represents mean average CO ₂ tootprint. It is shown in the present	la l
Present Address	contry of the suprace CO, footprint depends on the average electricity power demand	Here, $f(D)$ represents the specific CO ₂ emissions as a function of electric power demand D.
nonne or interna contrastion internes Research	which is the case for most of mixed partly renewable and partly non-renewable	The mathematical analysis showed, that equation (19) is only valid, when the CO2 emissions are completely independ
Kutheimer Queralke 2, 76131 Kartsruhe	electric energy systems. Therefore, the real CO ₂ emissions would outmatch those	the energy supply situation, i.e., if the complete electric energy would be either supplied constantly only by one technol wind power, or would be supplied by a constant mix of several technologies, i.e. a combination of wind power and phot
	according to simplified easily by factor 2 in reality depending on the status of the elec-	power, which is both by far not the case.
	tricity system. In order to establish a more precise calculation of the CO2 footprint,	
	the general formula $\Delta F(\overline{D}, \Delta D) = \overline{D} \Delta M(\overline{D}, \Delta D) + \Delta D M(\overline{D} + \Delta D)$ which is exact	
	and contains the simplified formula as a special case, is derived in this manuscript.	700- CCC.
	The simplified formula requires an additional ferm that takes into account the change of the mean meaned CO. (contraint A.M. depending on the electricity networ demand	E
	or the mean metage CO2 tools in this is depending on the electricity power denimite.	T = 200 D
	KEYWORDS:	d 500-
	CO2 emissions, electricity, Iossii-based energy, non-fossii-based energy, fundamental theorem of differ-	
	ential and integral calculation according to Leibniz	a 400-
		5 300 JΔM
		8 to the second se
1 GENERAL INTRODUC	TION	200-
		8 100
The rapid reduction of global CO2 en	missions is the key recommendation of the Intergovernmental Panel of Climate Change	and a second s
PCC . Policy makers around the wo	rld are responding to enable this ambitious target [20]. A total global remaining CO ₂ budget	0 10 20 20 40 50 10 10
of 4.0 Gt for an numanity was analyze of the warming limit base been deter	su by the IPCC to limit global warming to 1.5 °C. Detailed probabilities for the achievement minad but are unimportant for the focus of this publication.	electric power demand D (GW)
A noise warming mini have oden detern A noise approach to manage and an	above the induction of CO, emissions is to define different sectors such as electric nower	electric power demand to [ow]
transport, industry, households. Each	sector is typically regulated with a tighter limit on CO ₂ emissions, i.e., a 50% reduction.	FIGURE 6 Graphical illustration of equation (50) and (51) Please note that the depicted areas represent $\overline{M}(D)$
However, looking at each sector in iso	olation can lead to inaccurate estimates of CO2 emissions because the sectors interact.	$D\Delta M(D, \Delta D)$.

08.09.2021

Are low carbon reFuels a solution - a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

Are low carbon reFuels a solution - a reFuels assessment

The avaraging bias

Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

IFKM

07.09.2021: Response of EU-commission

Are low carbon reFuels a solution – a reFuels assessment

07.09.2021: Response of EU-commission

The revision of the CO2 standards for cars and vans is one of the key proposals in this package. It aims to accelerate the CO2 reductions, to be consistent with the European Climate Law², by setting ambitious targets in the years 2030 and 2035. The reductions compared to the base year of 2021 are set at -55% and -100% respectively. The proposal will boost the production and sales of low and zero emissions vehicles and put road transport on a firm path to zero-emission mobility in 2050. The role of biofuels and e-fuels was analysed in-depth in the Commission's impact assessment and in the study³ exploring the life-cycle assessment of various alternatively powered vehicles. These showed that the current tailpipe focused approach would lead to the highest environmental benefits. Stricter CO2 standards are not only beneficial from a

08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

Overview

- 1 IPCC Guideline
- 2 Why reFuels?
- 3 Why IASTEC?
- 4 Critical discussion?
- 5 Summary

24

Critical discussion of our argumentation

- A couple of very critical and partly inaccaptable attacks towards our position paper and ZAMM publication were even embarassing! Our petition to precisely define the CO₂ impact of electrical consumers is very strong, as we defined a mathematical axiom, which is valid for a mixed partly renewable partly non-renewable electricity system in general!
- What we should further improve:
- We often argue, that the existing fleet requires reFuels. This leads to the opinion, that reFuels are only necessary for a interim-period.

Critical discussion of our argumentation

- We often argue, that it is impossible to quickly build up infrastructure and CO₂ free electricity. This argument is also transferred into: -> "but after a time period reFuels don't make sense any more and are not required"
- We shouldn't emphasize arguments leading to difficulties of raw material availability (copper, nickel), as we have the impression, that production difficulties are not seen a political issue.
- The political postulation to reduce individual pesscars from 450 to 150 cars/1000 inhabitants German is pushed. We should not argue with cost or social unequities (poor people not able).
- We need to emphasize the negative impact on tax, jobs, environment, political stability.
 08.09.2021 Are low carbon reFuels a solution a reFuels assessment

Thank you for your attention

27 08.09.2021

Are low carbon reFuels a solution - a reFuels assessment

Reference electricity demand for analysis

Boundary conditions of analysis

Prof. Dr. sc. techn. Thomas Koch

- The analysis is based on hourly-resolved real-time data from the network operators from 2017
- The balance limit is Germany.
- Balance flows across system r. boundaries (import and export flows) are considered.
- A comparison with the integral parameters of the year 2019 shows the general transferability of the approach.

The expansion of wind power and photovoltaic plants is making an increasingly effective contribution to Germany's overall energy balance. 2017 was used as the reference year for the analyses.

Expansion potential of wind power and photovoltaics

Explanation "installed power"

The expansion of installed capacity, primarily of wind power and photovoltaics, is based on the analysis of the Federal Network Agency of 15.06.2018 and 26.07.2020.

The following increase in installed capacity is forecast:

Expansion of wind power and photovoltaics will increase strongly in the coming years. The expansion targets assumed in the selected scenario framework are ambitious and are taken as given.

29 08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Institute of internal combustion engine research Prof. Dr. sc. techn. Thomas Koch

Karlsruher Institut fü

Explanation "analysis 2030"

- The analysis shown on the left is a combination of 2017 real-time data and installed capacity buildout data.
- Wind is analyzed separately onshore and offshore, but listed together in the figure.
- Also in this representation on the left is the basis
 - 0 BEV Scenario
 - Expansion of heat pumps according to scenario specifications.

Hourly-resolved simulation 2030

The sum of photovoltaics, wind power, hydropower and biomass is summarized as "non-fossil generation". The non-fossil minimum / peak sum capacity is approx. 7/126 GW in 2030.

Balance sheet analysis

Explanation CO₂ footprint

Institute of internal combustion engine research

Prof. Dr. sc. techn. Thomas Koch

A footprint of 198 g_{co2}/kWh leads to a theoretical value of 45 g_{co2}/km for 22.5 kWh / 100km (BEV).

31 08.09.2021

Are low carbon reFuels a solution – a reFuels assessment

Explanation "spec. CO₂ emissions"

- For example, for 10 million BEV vehicles, this results in 17.3 million tons of additional CO₂ emissions at 14.000 km/year per vehicle and 22.5 kWh / 100 km.
- The left illustration shows a different electrical energy demand.
- Of course, higher electrical energy demand also increases the CO₂ footprint.

For the electric energy demand of 22.5 kWh / 100 km, the CO_2 emission in 2030 is between 121 and 124 g CO_2 / km depending on the number of vehicles!

BEV CO₂ emissions 2030 CO₂ emissions 2030

Questions, answers, and comments

Q. The present situation in Germany regarding to the change ratio of electrical energy and push of regeneration energy will not be enough to drive the electrical vehicles in the future. Is that the basic message?

A. Basic message is the CO2 impact to the electricity sector is significantly higher than assumed. According to German renewable energy law, photovoltaic and wind turbine has low impact and were preferred. However, the CO2 impacts increased as the electricity demand is increased. Question is how the additional electricity demand will interact with the CO2 impacts. Political report only used multiplication of the average CO2 emission value times electricity demand, but the CO2 emission value also interacts with the electrical demand, two times more than the average when the electrical demand is high.

Q. According the different fuel blend from your PowerPoint, 33% e-fuel for diesel, 40% e-fuel for gasoline to 50% and towards 100%. What are the future components of R100 and G100 when you are aiming for 100%?

A. Importance is the path how we will produce the paraffine diesel and methanol. Different path to produce paraffine diesel and methanol such as biomass, electrolysis, gas-shifting, but Ethanol and Methanol are the major components for Gasoline and Paraffine Diesel is the major component for the diesel.

Q. But in that case, we need something with high density because we will suffer from too little benzene quantity if we increase the paraffine portion.

A. Adding additives is required.

C. Even if we provide all the electricity with renewable energy, there is another problem with how we store the energy because electricity is not storable. Liquid fuel is a perfect way to store energy and transport compare to the battery.

ReFuel 2021

Statistics and physics of the transition of energy and mobility systems in Europe

Frank Atzler

TU Dresden

About the speaker:

- Professor of Combustion Engines and Power Train Systems in TU Dresden, Germany
- PhD at University of Leeds
- Professional career at IVECO and Continental Automotive GmbH

The Transition of Energy and Mobility Systems

International Workshop on the Application of Carbon-neutral Fuel, September 9th, 2021

Prof. Dr. Ing. Frank Atzler

Primary Energy Consumption in Germany Source: Arbeitsgemeinschaft Energiebilanzen, 2019* https://www.ag-energiebilanzen.de/

1) only 14,8% (2020: 16,8%) of the overall primary energy consumtion are covered by renewables
 2) only 5% of the overall primary energy consumtion are supplied by wind and photovoltaics
 3) Germany/Europe will always be dependent on energy imports, currently nearly 70% of primary energy*
 4) Which energy carrier is suitable for long distance transport über weite Strecken? Electricity, H₂, liquid reFuels?

Electricity Generation in Germany 2019

Source: Arbeitsgemeinschaft Energiebilanzen, Stand 2019 https://www.ag-energiebilanzen.de/

Energy Import to Germany, Share of Primary Energy Demand

Energy imports should be made in a form that can be stored. This is important to cover import and supply fluctuations of any kind. A self-sufficient energy supply will hardly be possible in Europe.

Lehrstuhl VERBRENNUNGS OTOREN und Antriebssysteme 4 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Energy import to Europe/Germany 1990 - 2014 Source: Eurostat

VERBRENNUNGS OTOREN und Antriebssysteme

5 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Electricity production: wind energy Self-sufficient Germany?

Number of wind turbines in Germany 2018: $30518 \rightarrow 126$ TWh yield in 2019 Sources: Bundesverband Windenergie, Umweltbundesamt, Bundesnetzagentur + www.smard.de

Basis: Primary Energy Consumption in Germany 2021, estimate app. 3500TWh								
Zahl der Anlagen	Full Load Power	Overall Power	Load Factor	Energy harvest	Fraction of 3500TWh			
n	MW	MW		TWh/a	%			
60000	3	180000	0,23	363	10,4%			
			Surface	Distance				
	Turbines per	Surface of	Square per	between				
	Windpark	Gemany	Park	Windparks				
	-	km2	km2	km				
60000	10	357000	59,5	7 to 8km				

 \rightarrow "each village its own wind park" \rightarrow citizen participation? \rightarrow nevertheless scenarios with 60000 wind turbines are rather unlikely.

Sources: Load Factor: http://windmonitor.iee.fraunhofer.de/windmonitor_de/3_Onshore/5_betriebsergebnisse/1_volllaststunden/, own calculations, Atzler, TU Dresden, Stat. Bundesamt 2019

Electricity production: photo voltaics Self-sufficient Germany?

			Total yield for all of	Conversion		
		Average Yield in	the surface, in	kWh in TWh,		
Germany, km2	Germany, m2	kWh/m2/a	kWh/a	/10^9		
357000	3,57E+11	1100	3,927E+14	392700		
Total of sealed surfaces	in Germany	5%	Source: IGR Monitor	Source: IGR Monitor		
Populated area		12,50%				
theoretical yield from 1% of the surface, in TWh:				3927		
Overall Primary Energy Consumption, est. for		for 2021		3500		
On 3% of Germany's su	rface enough energ	y could be harvested the	oretically to produce	Methanol at an effici	iency including all	losses of 33%
(Methanol production f	rom electrolysed H	ydrogen is rated at an eff	ficiency of app. 50%)			
Methanol is a chemical	energy storage for	darkness and dead calm	(no wind at all) as wel	l as for winter, and e	ngines can be rur	n with it CO2 neutrall
3% of Germany's surface, km2:		10710	10710 PV-Parks, 1km	33,3		
			Distance between P\			

Sources: own calculations, Atzler, TU Dresden, Fraunhofer ISE, Stromgestehungskosten erneuerbare Energien, Juni 2021, energy yield Germany 950 (north) to 1300kWh/m²/a (south) → mean 1125

VERBRENNUNGS OTOREN und Antriebssysteme

7 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Primary Energy Consumption in Germany

Source: Arbeitsgemeinschaft Energiebilanzen, 2019* https://www.ag-energiebilanzen.de/

1) only 14,8% (2020: 16,8%) of the overall primary energy consumtion are covered by renewables
 2) only 5% of the overall primary energy consumtion are supplied by wind and photovoltaics
 3) Germany/Europe will always be dependent on energy imports, currently nearly 70% of primary energy*
 4) Which energy carrier is suitable for long distance transport über weite Strecken? Electricity, H₂, liquid reFuels?

Photovoltaics, world map of sun energy

Konrad Mertens, "Photovoltaik - Lehrbuch zu Grundlagen, Technologie und Praxis", Hanser Verlag, 2020

Average yield in Germany app. 1100kWh/m²/a

Yield in the "sun belt" of the world: up to 2500kWh/m²/a → Factor 2,27 → economical production! <u>Geopolitical questions</u>: Spain, Portugal, South of Italy, Greece → within the EU Turkey, Australia, Brasil, Chile, Argentine ? Regions of Africa? USA, China and Indien are assumed to use their ressources themselves

VERBRENNUNGS OTOREN und Antriebssysteme 9 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Lehrstuhl

Wind map of the world, wind speed 80m above ground

https://crushtymks.com/wind-power/1607-what-about-the-worlds-wind-resources.html

Areas with elevated wind potential: near coastal regionen of Europe (Atlantic, north sea, baltic sea), Russia, Alaska, Canada, Patagonia, Greenland, South Africa and Australia, North-West-Africa, Central USA

Germany: ca. 7m/s Potential areas: 9 m/s

Energy logistics across the world The challenge of volumetric Energy Density

• Hydrogen H₂: Liquid at -253 °C: 71 kg/m³ \rightarrow 2343 kWh/m³ = 2,34 kWh/Liter Liquefaction consumes some 25 - 40% of the energy content of H₂ \rightarrow 1,4 - 1,8 kWh_{eff} gaseous, 700bar: 43 kg/m³ \rightarrow 1419 kWh/m³ = 1,42 kWh/Liter Compression to 700bar consumes app. 15% of the energy content of H₂ \rightarrow 1,2kWh_{eff}

• Green Fuels synthesised from H₂ und recycling carbon (CO₂)

Example: Methanol: 790 kg/m³ \rightarrow 4425 kWh/m³ = 4,43 kWh/Liter Compare: Diesel, 835kg/m³ \rightarrow 9740kWh/m³ = 9,74kWh/Liter

✓ Storage, Logistics, Infrastructure

Not the alternative with the highest efficiency will win, but the one which offers the best compromise. <u>Mostly this will relate to overall cost</u>, which covers for cheapest energy production, best handling and logistics. But also <u>availability</u>, <u>scalability to immense quantities and robust and cheap production</u> will be essential, as well as the <u>electricity generation in darkness</u>, <u>calm (no wind)</u>, <u>and winter</u>. Also the <u>strategig</u> reserve of any nation, i.e. the energy storage for e.g. 6 months and last but not least <u>easy handling and</u>

comfort for the customer.

Lehrstuhl VERBRENNUNGS und Antriebssysteme 11 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

- with the introduction of renewables, Wind and PV, there is more volatile energy in the European distribution network → production peaks can often not be used and must be compensated for with huge effort to maintain net stability
- \rightarrow excess electricity could be used for electrolysis and PtX production
- · But how much excess energy is there?
- 5,5TWh corresponds to only 0,15% of primary energy turn over
- reFuel production from "excess energy" is by far insufficient, a dedicated energy strategy is needed!

Source: Bundesnetzagentur und https://www.energie-lexikon.info/ausfallarbeit.html

TECHNISCHE

UNIVERSITÄT

DRESDEN

Efficiency of the production and use of regenerative fuels Comparison to driving with electricity directly

Efficiency of the production and use of regenerative fuels Comparison to driving with electricity directly

DRESDEN

Forecast, Energy supply in 2050

Sources: Sens, Brauer et al, IAV, in SAE ICE 9/2019 und FNR e.V., own calculations

und Antriebssysteme 15 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing

Primäry Energy Consumption in Germany from 1990 - 2017

Quelle: Arbeitsgemeinschaft Energiebilanzen (AGEB)

VERBRENNUNGS MOTOREN

Lehrstuhl

(optimistic) Linear Forecast for 2050: app. 3000 TWh

DRESDEN

und Antriebssystem 16 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Conclusions (short version)

- Industrialised countries are likely to depend on energy imports, when the available land surface and the yield from wind and PV is limited.
- For this import only energy carriers are suitable with simple, scaleable, robust and cheap production, reasonable volumetric energy density and simple handling.
- Green electricity resp. Hydrogen as base substance will be needed in vast quantities → there is by far enough energy from the sun belt of the earth
- for **mobile applications** and **long distance energy logistics liquid fuels** have essential advantages in energy density, handling and range vs. gaseous fuels.
- splitting liquid fuels back into hydrogen does not make any sens. Combustion engines can use these fuels directly and energy storage also is soved with liquid fuels.
- Nowadays the cleansing of combustion engine emissions is a solved issue.

Lehrstuhl VERBRENNUNGS und Antriebssysteme 17 /Atzler © Lectures, Public, No copying of any part without prior permission and without referencing !

Conclusions (long version) We will need ALL technologies, battery-electric, Hydrogen, eFuels !

- Germany or any other industrialised country with limited geographical and geological resources will always remain dependent on imports. Nevertheless the share of renewable energies must be increased vastly from currently less than 20% of the total energy turnover. This includes all forms of energy, not only electric (mechanical, heat).
- Subsequently this is only possible in a **globalised energy economy**, where the transfer of energy will only be possible in few cases by cable (electricity) or pipeline (Hydrogen, natural gas).
- The transport of Hydrogen in pipelines will be favourable for some application e.g. a national grid. However, for long distance transport its volumetric energy density is unfavourably low, supercooling and compression energetically not sensible.
- A liquid energy carrier with reasonable volumetric energy density, which can be produced with reasonable efficiency, robustly, simple and scaleable to huge quantities is Methanol. (Source: e.g. Prof. Bertau (Bergakademie Freiberg) et.al. Methanol: The basic Chemical and Energy Feedstock of the Future, Springer Verlag; Prof. Robert Schlögl, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin).
 Methanol is liquid at ambient pressure and temperature, i.e. handling is simple. It can be used in fuel cells and combustion engines. Toxicity appears to be one topic of discussion, however, gasoline is not less toxic and intoxications are rather rare! Methanol can be processed to eKerosene and eDiesel, as well as eGasoline to serve to defossilise the existing vehicle fleet. Also other renewable fuels, e.g. from waste, appear attractive from their energetic balance as well as cost → Prof. Willner, HAW Hamburg
- <u>Closed Carbon Cycle</u> \rightarrow H₂ electrolysed from green electricity and synthesised with recycled carbon(dioxide) to new fuel.
- direct air capture of CO₂ → currently still complex and expensive, because the concentration in air is only 0.04%.
- Recycling from so called point sources (= industrial plants) is much less complex and cheaper (app. factor of 4). For a long time to come there will be a sufficient number of point sources (waste incineration, concrete works, others) to satisfy the Methanol/energy demand of the world. The CO₂ concentration in such exhaust gases is some 5 15% (depending on process and operation condition). The fuel produced from recycled carbon will then be CO₂ neutral, not CO₂ free. Nevertheless, the carbon footprint will still be vastly reduced.
 Sensible market division:
- short distance and low power density applications → battery electric
- middle distance und medium power (distributors, communal vehicles, bus fleets) → hydrogen combustion engine (technology quickly available, transient operation needs some develoment) and fuel cell (not in serial production yet)
- long distance and high power demand: long haul trucks, building and agricultural machinery (refuelling, operational hours per day), railways which cannot be electrified economically, aviation → combustion engines with eFuels from various sources

Questions, answers, and comments

Q. Whenever we have argument about this with people from other field, they talk about economic liability and efficiency. Can you mention quantitatively?

A. I have not researched overall efficiency in depth. However, according to a swiss magazine article, energy generation with stream turbine and coal fire plant, efficiency is 35-40% and combined efficiency is 80-85%. It is unfair comparison since the heat can be generated elsewhere and this is what Thomas argued. Increased electricity because of the battery car will be generated from the fossil fuel.

C. Electrical car is more energy efficient. However, from the hybridization, modern Truck efficiency is 40-42% and passenger car is 40%.

Q. If you would convert the strategic oil reserve in US to equivalent energy quantity of batteries, you need to spend 5000 years of global GDP.

A. Methanol as the basic substance, low burstiness, cheapness, and durability, but not efficiency. Under 1cent/kwh in Saudi Arabia PV

ReFuel 2021

Japanese policy for carbon neutrality and e-fuel

Akiteru Maruta Technova Inc.

About the speaker:

- Project Manager in Energy Research Department, Technova Inc., Tokyo, Japan
- PhD at University of Tokyo
- Project associations with NEDO, METI, and HyGrid Study Group in Japan

Japanese policy for carbon neutrality and e-fuel

Akiteru (Aki) MARUTA, Ph.D. Project Manager/Principal, Energy Research Dept, Technova, Inc maruta@technova.co.jp

Copyright 2021 Technova Inc. All Rights Reserved

Contents

- Policy: Zero Carbon by 2050 and Green Growth Strategy
- Policy: Carbon Recycling Roadmap
- Toward Carbon-Neutral E-Fuel
- Conclusion

Disclaimer

The information, including translation, analysis and comments in this presentation are those of the author and do not necessarily reflect the official position and opinion of neither the Japanese Government nor any Japanese companies.

TECHNOVA

E-Fuel: Definition

• E-Fuel requires renewable hydrogen (the definition?)

Source: METI "Green Synthetic liquid fuels" (featured contents)

Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 2

TECHNO

Policy: Zero Carbon by 2050 and Green Growth Strategy

Policy: Zero Carbon by 2050

• Green Growth Strategy is the key policy for net zero 2050

(Policy Speech by the Prime Minister to the 203rd Session of the Diet, 26 Oct 2020)

"We hereby declare that by 2050 Japan will aim to reduce greenhouse gas emissions to net-zero, that is, to realize a carbon-neutral, decarbonized society"

Green Growth Strategy (25 Dec 2020) Updated Green Growth Strategy (18 June 2021)

Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

Source: METI "Green Growth Strategy" Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

4

/ © TECHNOVA .INC All Rights Reserved. Source: METI "Green Growth Strategy" Unofficial Translation Sept 9 2021

TECHNO

Green Growth Strategy (June 2021): Main Concept Toward Net Zero 2050

Green Growth Strategy (June 2021): **14 Growth Sectors**

Hydrogen and E-Fuel are key for de-carbonization of Sectors

Source: METI "Green Growth Strategy" Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

Green Growth Strategy (June 2021): **Roadmap on Carbon Recycling and Materials**

Roadmap on Carbon Recycling •^{導入フェーズ}: 1. 開発フェーズ 2. 実証フェーズ 3. 導入拡大・ コスト低端フェーズ 4. 自立商用フェーズ ●具体化すべき政策手法: ①目標、②法制度(規制改革等)、③標準、④税、⑤予算、⑥金融、⑦公共調達等 and Materials

※代表事例を記載	2021年	2022年	2023年	2024年	2025年	~2030年	~2040年	~2050年
● <u>コンクリート</u> コスト目標 2030年 30円台/m3	・2025年日本国 ・新技術に関する さらに、道路、建	■際博覧会における ■交省データベーン ■交省データベーン	導入を検討 <u>ス</u> にCO ₂ 吸収型コン る販路拡大、コスト	クリートを登録し、地 低減	8方白治体による <u>公</u> ま	ミ調連 を拡大	・大規模な国際展示会での	PR等を行い、
(=既製品と同等)	 防錆性能を持つ の技術開発 	コンクリート	・防錆性能を持ち	フコンクリート の実調	Ē		途上国等へも販路拡大	7東業形能の活用
	・ <u>CO2吸収量の地</u>	■ <u> 一 またと低コスト化</u> を同	」 「立させた新技術・	製品の開発	・新技	ち術を活用した製品の実証	によるシェア獲得・拡大	
	・日米の産学官 ・関係国とのカー	の関係者が <u>CO2炭</u> ボンリサイクル協力	・ 酸塩化 (コンクリー MOCを締結し、共同	ト化)に関する <u>共同</u> 司研究・実証を推進	リプロジェクト を実施 L			
● セメント 国内キルン全機導入	・セメント製造工 ・回収CO2の <u>炭</u>	場での <u>CO2回収技</u> 酸 <u>塩化</u> による原料・	術の開発 燃料化プロセスの開	閉発		 ・大規模設備でのCO2 回収と炭酸塩化技術 実証 	・設備導入コスト低減・補助。 ・国内メーカー、アジアメーカ ・海外企業へのライセンスビジ	金等による <u>導入支援</u> ーへの技術展開 ネスの展開
● <u>カーボン</u>								
リサイクル 燃料 2030年 100円台/L	・2030年頃 ・国際航空 (※ICAO :	もの商用化に向けた に関し、 <u> ICAO</u> により 国際民間航空機関)	<u>大規模実証</u> 、 <u>コス </u>)、2019年比でCC	- 低減 ₂ 排出量を増加させ	ないことが制度化(2021~2035年)	・SAFの国際市場の動向に	たじて、国内外において、航
(= 既製品と同等) (i)代替航空燃料 (SAF)	【ガス化FT合 【ATJ】 高温 【微細藻類】	成]様々な原料の品 状態の触媒反応の制 CO2吸収効率の向上	質を均一化する破砕 御技術の開発を継続 や藻の安定的な増殖	処理技術の開発を継 による <u>生産性向上、</u>	続 品質改良の技術開発を	継続 等	空機へ競争力のあるSAFの	供給 <u>拡大</u>
	合成燃料の ・既存技術(逆 ・製造設備の設	製造技術の開発 シフト反応+FT合成プロセス 計開発	 () の高効率化 			大規模製造の実証	導入拡大・コスト低減	自立商用
E-Fuel	<u>合成燃料の</u> ・CO ₂ 電解(・ ・共電解+FT ・直接合成(■ 革新的製造技術の + 水電解) + FT合成プロセン 合成プロセスの研究開発 Direct-FT)プロセスの研究	月発 えの研究開発 開発					
(iii) 合成メタン コスト目標		1	2040年頃の商用(とに向けた大規模実計	正、コスト低減		更なるコスト低減による <u>導入拡大</u>	商用的拡大
2050年 40~50円/Nm3 (=現在のLNG価格と同等)		l	低コスト化に向けた 新	たな基礎技術の開発	(共電解等)		実証による <mark>大規模化、低コスト化</mark>	更なるコスト低減による導入拡大
			海外+	ナプライチェーン構築に「	向けた調査·実証	海外から国	内への輸送開始・導入拡大	商用的拡大
(iv) グリーンLPG	<u>触媒等</u> の	実証試験に必要な <u>基盤</u>	技術の開発			★目標(2030年時) グリーンLPガスの商用化	×	目標(2050年時) 9ガスにおけるカーボンニュートラルの実現
				商用化に向けた実計	152		コスト低減 クリ	ーンLPカス合成技術の普及拡大

Source: METI "Green Growth Strategy" Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

TECHNO

8

ECHNO

Green Growth Strategy (June 2021): **Roadmap on Carbon Recycling and Materials**

Roadmap on Carbon Recycling •^{ij} 1. III 1. III 2. EET-2 and Materials

●具体化すべき政策手法: ①目標、②法制度(規制改革等)、③標準、④税、⑤予算、⑥金融、⑦公共調達等

					Dev	velopment Demon	stration Large scale deployment & cost reduc	tion Commercial
	2021	2022	2023	2024	2025	~2030	~2040	~2050
E-Fuel	E-Fuel I • Efficien • Develo Innova • Electric • Co-elec • Direct I	Production of reverse sub- pment of p tive E-Fu cal CO2 rec ctrolysis + FT synthes	on Techn hift reaction roduction el Produ uction + F FT synthes is	ology on & FT syn facility ction Te T synthesi sis	nthesis chnology s	Large-scale demonstration	Large scale deployment & cost reduction	Commercial (Self-sustained market)
	 Co-elect Direct 	T synthes	is	SIS				

E-Fuel	合成燃料の革新的製造技術の開発 ・C0、電解(+水間約・FT合成刀に以の研究開発 ・比電解+FT合成刀に以の研究開発 ・環境+FT合成刀に以の研究開発 ・環境+G-は、(breet-FT)、プロに20時間開発			
(iii) 合成メタン コスト目標	2040年頃の商用化に向けた 大規模実証、コスト低減		更なるコスト低減による導入拡大	商用的拡大
2050年 40~50円/Nm3 (=現在のLNG価格と同等)	低コスト化に向けた 新たな基礎技術の開発 (共電解等)		実証による大規模化、低コスト化	更なるコスト低減による <u>導入拡大</u>
	海外サプライチェーン構築に向けた調査・実証	海外から国	内への輸送開始・導入拡大	商用的拡大
(iv) グリーンLPG	触媒要の実証試験に必要な 基盤技術の開発	★目標(2030年時) グリーンLPガスの商用化	×	目標(2050年時) Pガスにおけるカーボンニュートラルの実現
	商用化に向けた実証 152		コスト低減 グリ	ーンLPガス合成技術の普及拡大

Source: METI "Green Growth Strategy" Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

Green Innovation Fund (2021-2030)

• 2 trillion yen (15 billion EUR) for 10 years, managed by NEDO

Priorities

- 1. Off-shore wind
- 2. Next-generation PV
- 3. Large-scale hydrogen supply-chain **
- 4. Electrolysis for green hydrogen **
- 5. Hydrogen steel-making
- 6. Fuel ammonia supply-chain
- 7. CO2 recycling for plastic materials
- 8. CO2 recycling for fuels (auto, aviation, residential/commercial)
- 9. CO2 recycling for concrete products
- 10. CCUS
- 11. CO2 capturing technology at incinerators
- 12. Next generation batteries and motors
- 13. Innovative supply-chain for automotive electrification
- 14. Smart Mobility Society
- 15. Next generation digital infrastructure
- 16. Next generation aircrafts *
- 17. Next generation ships *
- 18. CO2 reduction / storage in Foods, agriculture, forestry and fisheries

- * Call for proposals (CfP)
- ** Announcement of adopted projects

ECHNO

< CfP is planned >

Policy: Carbon Recycling Roadmap

Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 12

TECHNO

Roadmap for Carbon Recycling Technologies (originally in June 2019, updated in July 2021)

E-Fuel: Starting from SAF, then to road fuel (E-Fuel)? Volume of utilized CO₂ Phase 1 Phase 3 Phase 2 Pursue all potential technologies Further cost reduction on Cost reduction of technologies to for carbon recycling initiatives Focus on technologies to be Items for larger market (introduced from 2030) be spread in 2030 Technologies on commodity products, using low cost spread in 2030 Technologies without requiring Chemicals: Polycarbonate, etc. hydrogen, to be spread in 2040 hydrogen Liquid Fuels: Bio-jet fuels, etc. Technogym for high-value Concrete Products: Road curb blocks, etc. **Items into market** added materials from 2030 Items into market Chemicals **Chemicals** from 2040 Polycarbonate, etc **Chemicals** Reduction CO2 emissions **Liquid Fuels** Commodity (Olefin, BTX, etc.) Bio-jet fuel, etc. Liauid Fuels Fuels **Concrete Products** Gas, liquid fuels Cost must be 1/8 -Road curb blocks, Concrete Products 1/16 of current cost cement Commodity Concrete Products **Introduction of** commodity products: Products which do not require **Expansion of market** Cost must be 1/3 - 1/5 hydrogen of current cost **High-value added materials** Hydrogen 20 yen/Nm³ at gate < 1/4 of current cost CO₂ capture technology **Cost reduction** Today 2030 2040~

Source: METI "Roadmap for Carbon Recycling Technologies"

Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved.

13

NEDO: R&D of liquid fuel Production Technology **TECHNO** from CO2

• NEDO adopted FT synthesis Fuel project (from NEDO news release)

Project: P&D on carbon recyle liquid fuel using CO2 (Feb 22, 2021)Unofficialhttps://www.nedo.go.jp/news/press/AA5_101410.htmlTranslation

<u>Topics</u>

- R&D on innovative FT synthesis
- P&D on synthetic liquid fuel production process using renewable electricity

Syn gas Fuel **Project Team** Fuel Sources Application ~燃料利用~ production production ~燃料製造~ Seikei Gakuen Seikei University ~ 合成ガス製造 ~ ~原料~ **ENEOS** Corporation 次世代FT反応の研究開発 Industry Nagoya University . (factories) Yokohama National Univ • FT生成物 **Co-electrolysis** 工場 CO₂ 直接FT Idemitsu Kosan Co., Ltd. . 選択性制御 等 并 AIST Liquid • CO F fuel Renewable Japan Petroleum Energy Center . 液体 **One-pass** production 合成 合 解 **Project Term** electricity H₂O 燃料 成 FY 2021-FY 2024 H_2 FT process 電解利用技術 燃料利用技術 (合成ガス製造) **NEDO Budget** 海外 (直接FT) 承 再工术水素 MCH 4.5 bil yen (34 mil EUR) Renewable hydrogen 再エネ由来電力を利用した (imported) 液体合成燃料製造プロセスの研究開発 Liquid fuel production process using renewable electrisity Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 15 Source: NEDO News on Feb 22, 2021 Unofficial Translation

Toward Carbon-Neutral E-Fuel

Disclaimer

The information, <u>including translation</u>, analysis and comments in this presentation are those of the author and <u>do not necessarily reflect the official position and opinion of</u> <u>neither the Japanese Government nor any Japanese companies</u>.

What is the Carbon-neutrality of E-Fuel?

• E-Fuel: Hydrogen – Clear, CO2 – Where?

Source: METI "Green Synthetic liquid fuels" (featured contents)

Unofficial Translation Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 17

TECHNO

TECHNO

Carbon-neutrality of E-Fuel (1)

Carbon-neutrality of E-Fuel (1)

• With industry-based CO2, E-fuel is not carbon-neutral

TECHNO

- Using fossil fuel-based CO2, E-Fuel is not carbon-neutral.
- The overall CO2 emission reduction is no more than 50%

• For carbon-neutral E-Fuel, DAC is an option.

Carbon Source: DAC

DAC offers significant potential for E-fuel

IRENA "Hydrogen: A renewable energy perspective" (Sept 2019)

Direct air capture of CO₂

Because a primary driver for the energy transition is abatement of greenhouse gas emissions, the source of the CO_2 used for producing e-fuel is important. If the CO_2 is captured from a fossil fuel combustion process (e.g., a power plant) and is reacted with renewable hydrogen to yield an e-fuel, and this e-fuel is used to replace fossil fuel (e.g., jet fuel), then the total CO_2 emissions of both processes are halved. However, this is not in line with the Paris climate objectives, which require significant de-carbonisation of the global economy in the second half of this century.

This leaves as **options only CO_2 from biomass combustion and from direct air capture (DAC)**. The first option is less costly yet limited in potential (*e.g.*, biomass combustion is only possible in large power plants, biofuel refineries, bagasse boilers and pulp plants). The **second (DAC) is costlier but has unlimited potential**, provided that significant cost reductions take place and that the price for CO_2 is sufficient to support investments in such technologies. Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 21

Conclusion

Conclusion

•

Policy: Zero Carbon by 2050 and Green Growth Policy: Carbon Recycle

- Under Green Innovation Growth Initiative, Government promotes hydrogen, ammonia and E-Fuels.
- E-Fuel can contribute to industry growth as well as decarbonization.
- E-Fuel may be introduced into the market around 2040.
- E-Fuel may start from SAF, and then to road fuel.

Toward Carbon-Neutral E-Fuel

- If fossil-fuel based CO2 for E-Fuel, "someone" must be responsible for CO2 emission (and CO2 emission reduction is no more than 50%)
- To guarantee carbon neutrality for E-Fuels, DAC technology is the key.
- Carbon neutral E-Fuels can compete with other carbon-neutral technologies (electricity, green/blue hydrogen and others).

Sept 9 2021 / © TECHNOVA .INC All Rights Reserved. 23

Questions, answers, and comments

Q. All of the activities you mentioned need a lot of investment and legal agreement. Do you seem such a plan you proposed by the committee that implement the conditions and investment find business potential?

A. We need international discussion, which we are going to do. We have to understand global big picture. Our government will support the vision, as long as it supports the decarbonization.

ReFuel 2021

E-fuel contribution via R&D in Finland

Martti Larmi Aalto University

About the speaker:

- Professor in Energy Technology and Head of Energy Conversion Research Group at Aalto University
- PhD at Helsinki University of Technology
- Professional career at Wärtsilä

E-fuel contribution via research and development in Finland

Martti Larmi & Michal Wojcieszyk & Annukka Santasalo-Aarnio & Ossi Kaario & Qiang Cheng & Ville Vuorinen

Martti Larmi <u>martti.larmi@aalto.fi</u> Professor, Aalto University 9th September 2021

Research Group of Energy Conversion

Aalto University School of Engineering

Agenda

- 1. Overview of e-fuels
- 2. Current e-fuel projects in Finland
- 3. Aalto University activities in the field of e-fuels

Agenda

- 1. Overview of e-fuels
- 2. Current e-fuel projects in Finland
- 3. Aalto University activities in the field of e-fuels

Aalto University School of Engineering

In decarbonization of transport...

...each segment needs tailored solutions

E-fuels as energy carriers for hard-to-abate sectors

Promising examples:

- Methane
- Methanol
- Ammonia
- Hydrogen
- FT fuels
- Dimethyl ether

Hydrogen

Benefits:

- Carbon-free e-fuel when integrated with renewable electricity
- Can be used either in ICE (addition to LNG, Otto or Diesel concept) or in fuel cells

Challenges:

- Infrastructure
- Storage and volumetric energy density
- Difficult to control combustion (very high flame speed)
- Hydrogen embrittlement
- Injection system

Figure: Cheng, Q., Ahmad, Z., Kaario, O., Vuorinen, V. and Larmi, M., 2021. Experimental study on tri-fuel combustion using premixed methane-hydrogen mixtures ignited by a diesel pilot. International Journal 1. 2

of Hydrogen Energy. Verhelst, S. and Wallner, T., 2009. Hydrogen-fueled internal combustion engines. Progress in energy and combustion science, 35(6), pp.490-527.

CH₃OH

Methanol

- Storage in atmospheric conditions (liquid)
- · Biodegradable and miscible with water, far less toxic for aquatic life than HFO/MDO
- · Need for dedicated engines or retrofitting
- Successfully demonstrated combustion concepts¹
- Significant decrease in local emissions (no SO_x and PM, lower NO_x)

Aalto University School of Engineering

FIGURE 10 Three methanol dual-fuel engine concepts successfully demonstrated in the marine market.

- Eigura: Santasalo-Aamio, A., Nyari, J., Wojcieszyk, M., Kaario, O., Kroyan, Y., Magdeldin, M., Larmi, M. and Järvinen, M., 2020. Application of Synthetic Renewable Methanol to Power the Future Propulsion (No. 2020-01-2151). SAE Technical Paper. Verhelst, S., Turner, J.W., Sileghem, L. and Vancoillie, J., 2019. Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, pp.43-88.
- Dong, Y., Kaario, O., Hassan, G., Ranta, O., Larmi, M. and Johansson, B., 2020. High-pressure direct injection of methanol and pilot diesel: A non-premixed dual-fuel engine concept. Fuel, 277, p.117932. 3

SAE International.

Liquified e-methane

- Growing infrastructure for LNG compatible with LBG and liquified e-methane
- Commercial technology with available gas engines (dual-fuel, spark-gas)
- Emissions: no SO_x and PM, lower NO_x
- Methane slip issue (high GWP)

FIGURE 9 Required fuel tank space for the same autonomy of the vessel in case of fossil diesel oil, methanol, LNG, and liquid hydrogen. Example of a cubic shape tank, where 'a' is an arbitrary unit of the cube's dimension, and for LNG and H_2 cylindrical tanks required plus additional insulation.

Figure: Santasalo-Aarnio, A., Nyari, J., Wojcieszyk, M., Kaario, O., Kroyan, Y., Magdeldin, M., Larmi, M. and Järvinen, M., 2020. Application of Synthetic Renewable Methanol to Power the Future Propulsion (No. 202 01-2151). SAE Technical Paper. Ahmad, Z., Kaario, O., Qiang, C., Vuorinen, V. and Larmi, M., 2019. A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine. Applied Energy, 251, p.11

Challenges:

- · Low vol. energy density
- Low viscosity
- Corrosive
- High autoignition temp.
- Low flame speed
- Toxicity & emissions

Possibilities:

- Dual fuel combustion
- Hydrogen addition
- Other combustion concepts

<u>Figure</u>: Dimitriou, P. and Javaid, R., 2020. A review of ammonia as a compression ignition engine fuel. *International Journal of Hydrogen Energy*, 45(11), pp.7098-7118.
 Klüssmann, J., Ekknud, L., Ivarsson, A., Schramm, J., Ammonia Application in IC Engines., IEA Advanced Motor Fuels Technology Collaboration Programme, May 2020.

Ar-Abovenian C., Exhibit E., Walsson A., Sonianin, J., Annoha Application in Collignes, Les Autorised motor fuels retinology consistant registration (Constraint), p. 100670
 Ar-Abovenian F.Y., El-Halwagi, M.M., Moore, M. and Nielsen, R.S., 2021. Renewable ammonia as an alternative fuel for the shipping industry. *Current Opinion in Chemical Engineering*, 31, p.100670

CH₃-O-CH₃

Dimethyl ether

Benefits:

- High cetane number
- · Compatible with efficient diesel combustion
- Low PM emissions, low engine noise
- Non-toxic, evaporates from water and degrades in air
- Blending with HFO tested -> lower emissions²

Challenges:

- Gaseous fuel, requires special engines and infrastructure
- Viscosity and lubricity are challenging (additives needed)
- Low energy content (larger fuel tanks)
- Rarely considered in the context of maritime (in past interest for HD trucks)
- IEA, Technology Collaboration Programme on Advanced Motor Fuels, Dimethyl ether, <u>https://www.iea-amf.org/content/fuel_information/dme</u> <u>Figure</u>: Ryu, Y. and Dan, T., 2012. Combustion and emission characteristics of diesel engine by mixing DME and bunker oil. 한국마린엔지니어링학회지, 36(7), pp.885-893. Makoś, P., Słupek, E., Sobczak, J., Zabrocki, D., Hupka, J. and Rogala, A., 2019. Dimethyl ether (DME) as potential environmental friendly fuel. *In E3S Web of Conferences* (Vol. 116, p. 00048). EDP Scien

Aalto University School of Engineering

Agenda

- 1. Overview of e-fuels
- 2. Current e-fuel projects in Finland: PtX
- 3. Aalto University activities in the field of e-fuels

DME blending (20% & 40% wt.) with bunker oil improved performance²

"Veturi" - program to commercialize e-fuels

Goal: large-scale production and commercialization of e-fuels

3 key technologies:

- H₂ production through high-temp. electrolysis using a solid oxide electrolyzer cell (SOEC)
- CO₂ sequestration
- Fischer-Tropsch fuel synthesis

VTT, Neste and their partners seek breakthrough in Finnish e-fuel technology

Aalto University School of Engineering

https://www.vttresearch.com/en/news-and-ideas/vtt-neste-and-their-partners-seek-breakthrough-finnish-e-fuel-technology https://www.neste.com/releases-and-news/innovation/nestes-veturi-partner-programme-commercialize-e-fuels

"Veturi" - program to commercialize e-fuels

E-Fuel project is a collaborative act towards sustainable transportation fuels

51

Objectives of e-fuel "Veturi"-project

- Development of thermal integration of solid oxide electrolysis cell (SOEC) with downstream processes
- Optimal connection of electrolyser with power grid to maximize profit and minimize carbon emissions
- Development of catalytic partial oxidation (CPOX)/reverse water-gas shift (RWGS) concept integration and verification of long term operation (>1000 hrs)
- Development of integrated concept of CO₂ capture, electrolysis and FT synthesis
- 5. Demonstration of integrated concept in bench scale (>1000 hrs)
- 6. Demonstration of drop-in paraffinic e-fuel production (up to 300 kg) and usability
- 7. Ensuring the environmental and other impacts of e-fuel production and produced paraffinic efuel
- Generating e-fuel related technology IPR for exploitation and commercialization

Main objective: demonstrate production of drop-in paraffinic e-fuels in bench scale with high efficiency by combining and integrating high temperature electrolysis and Fischer-Tropsch synthesis

Target after 2 years: 10kt/a

https://www.e-fuel.fi/

SOLETAIR pilot plant

- Pilot plant to produce hydrocarbons from CO₂
- Coupled with solar power plant
- Supported by industrial partners

Journal of CO2 Utilization Volume 28, December 2018, Pages 235-246

Aalto University School of Engineering

Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept

Francisco Vidal Vázquez ^a, Joonas Koponen ^b A 텍, Vesa Ruuskanen ^b, Cyril Bajamundi ^a, Antti Kosonen ^b, Pekka Simell ^a, Jero Ahola ^b, Christian Frilund ^a, Jere Elfving ^a, Matti Reinikainen ^a, Niko Heikkinen ^a, Juho Kauppinen ^a, Paulo Piermartini ^a

SOLETAIR pilot plant

- Total operating time:
 300h
- Plant capacity: 6.2kg/day of oil and wax (combined)
- Conceptual plant energy efficiency: **47%**
- Carbon efficiency: 94%

LUT Lappeenranta University of Technology VTT

Vázquez, F.V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., Ahola, J., Frilund, C., Elfving, J., Reinikainen, M. and Heikkinen, N., 2018. Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 utilization, 28, pp.235-246.

Aalto University School of Engineering

ICO2CHEM project

 Waste CO₂ streams from industry converted to FT products

> EU funded Horizon 2020 project, coordinated by VTT
> Contact:

Jaana Laatikainen-Luntama Project coordinator jaana.laatikainen-luntama@vtt.fi https://www.spire2030.eu/ico2chem#

ICO2CHEM is the first Power-to-Liquid plant integrated into an industrial environment

News Published on 07 December 2020

The power-to-liquid plant has been installed at the Industrial Park Höchst in Frankfurt (Main) and was approved by GTÜ (approved inspection agency). It is now the world's first Power-to-Liquid plant integrated into an industrial environment. The operating campaign aiming to produce sustainable paraffinic waxes has just started and will last until the middle of 2021.

https://www.spire2030.eu/ico2chem#

P2X project

Target: 20MW electrolysis plant for renewable H₂ production

- Feb 2021: concept design and location selection (Harjavalta, 50M EUR)
- Currently: feasibility planning phase
- Next steps: application for investment support from EU and national resources
- End of 2024: the equipment scheduled to be operational

https://p2x.fi/hanke/

PtXENABLE project

Focus on the technology development along the value chain

Aalto University School of Engineering

Task 1.3 Methanol Millireactor Improvement by modelling https://doi.org/10.1016/j.ijhydene.2021.02.031

Contact: Annukka Santasalo-Aarnio Professor at Aalto annukka.santasalo@aalto.fi +358 50 3044482

Agenda

- 1. Overview of e-fuels
- 2. Current e-fuel projects in Finland: XtP
- 3. Aalto University activities in the field of e-fuels

Stena Line

Aalto University School of Engineering

Successful methanol engine retrofit

- Retrofit of Stena Germanica by Wärtsilä
- Direct injection of methanol and ignition by pilot diesel

- Delneri, D.: "Combustion System Optimization for Alternative Fuels", 17th Conference "The Working Process of the Internal Combustion Engine", Graz 2019
 Stojcevski Toni, Jay Dave, Vincenzi Luca, "Operational experience of world's first methanol engine in a ferry installation", CIMAC
- Stojcevski Toni, Jay Dave, Vincenzi Luca, "Operational experience of world's first methanol engine in a ferry installation", CIMAC congress Helsinki 2016, Paper 99

Hydrogen and ammonia tests

- Adoption of H₂ and NH₃ dependent on engine development
- Currently, advanced testing of fuelflexible combustion engines by Wärtsilä
- Promising tests with pure hydrogen and high content of ammonia (70%)

Contact:

Kai Juoperi Engine Fluids – Manager at Wärtsilä <u>kai.juoperi@wartsila.com</u>

Wärtsilä launches major test programme towards carbon-free solutions with hydrogen and ammonia

https://www.wartsila.com/media/news/14-07-2021-wartsila-launches-major-test-programme-towards-carbon-free-solutions-with-hydrogen-and-ammonia-2953362 https://www.wartsila.com/media/news/30-06-2020-world-s-first-full-scale-ammonia-engine-test---an-important-step-towards-carbon-free-shipping-2737809

Wärtsilä

Hydrogen enriched compressed natural gas

- Mixing of hydrogen in compressed natural gas (CNG) using several technical options
- In the first tests at VTT (2021), hydrogen injected to gas line
 - Share of H_2 in CNG from 7 to 15 wt%.
 - Engine was running smoothly
 - NO_x emissions reduced when ratio of H2 in CNG increased

T. Murtonen, M. Karppanen, A. Nieminen, S. Aaltonen, M. Nissilä, T. Välisalo, K. Lehtoranta, P. Aakko-Saksa - **VTT P2Move project**

Contact: Päivi Aakko-Saksa Principal Scientist at VTT paivi.aakko-saksa@vtt.fi +358 40 7207846

Gas engine, Mercedez-Benz

Engine designation	M270 DEH16LA*
Rated output	115 kW @ 5300 rpm
Rated torque	250 Nm @ 12504000 rpm
Compression ratio	10.3:1
Emissions standards	EU 5
No. of cylinders / valves	Inline 4 / 4 valves per cylinder
Tunability	Controllable standalone ECU*
Displacement	1595 cm3
Air supply	Turbocharger with charge air cooling
Boost pressure control	Electrically controlled vacuum actuator*
Boost pressure	0.7 bar
Bore	83.0 mm
Stroke	73.7 mm
Cylinder spacing	90.0 mm
Connecting rod length	152.2 mm
Injection	Sequential, intake manifold (CNG) Direct injection, optional (Gasoline)*

Agenda

- 1. Overview of e-fuels
- 2. Current e-fuel projects in Finland
- 3. Aalto University activities in the field of e-fuels

• Prof. Annukka Santasalo-Aarnio

Tanja Kallio Professor at Aalto tanja.kallio@aalto.fi

Contact:

Powering the Future: H2 electrolysis

Pt/SWCNT induces high H2 production

Aalto University School of Engineering

Powering the Future: Hydrogen as a fuel

High-Speed Schlieren Imaging of Hydrogen, effect of nozzle type on the hydrogen jets

Contact: Martti Larmi Professor at Aalto <u>martti.larmi@aalto.fi</u> +358 50 5695625

Aalto University School of Engineering

HYDROGE

Björn Saven's donation – Methanol as Hydrogen carrier

Ambitious goals:

- Record high energy conversion efficiency demo in 2022
- ✓ Strong proof for future upscaling & commercialization

Contact:

Martti Larmi <u>martti.larmi@aalto.fi</u> Annukka Santasalo-Aarnio <u>annukka.santasalo@aalto.fi</u>

Santasalo-Aarnio, A., Nyari, J., Wojcieszyk, M., Kaario, O., Kroyan, Y., Magdeldin, M., Larmi, M. and Järvinen, M., 2020. Application of Synthetic Renewable Methanol to Power the Future Propulsion (No. 2020-01-2151). SAE Technical Paper. DOI: https://doi.org/10.4271/2020-01-2151

https://www.aalto.fi/en/news/bjorn-savens-donation-to-aalto-university-makes-a-significant-contribution-to-hydrogen

Methanol as Hydrogen carrier: Power-to-Methanol

	Journal of CO_2 Utilization 39 (2020) 101166	
	Contents lists available at ScienceDirect	
	Journal of CO ₂ Utilization	(8.1.8)
ELSEVIER	journal homepage: www.elsevier.com/locate/jcou	D-\$1004.5

Techno-economic barriers of an industrial-scale methanol CCU-plant Judit Nyári, Mohamed Magdeldin, Martti Larmi, Mika Järvinen, Annukka Santasalo-Aarnio*

A numerical performance study of a fixed-bed reactor for methanol synthesis by CO₂ hydrogenation

Daulet Izbassarov ^{a,*}, Judit Nyári ^a, Bulut Tekgül ^a, Erkki Laurila ^a, Tanja Kallio ^b, Annukka Santasalo-Aarnio ^a, Ossi Kaario ^a, Ville Vuorinen ^a ^a Department of Mechanical Engineering, Aalo University, FJ00076, Espoo, Finland ^b Department of Chemistry and Materials Science, Aalo University, FJ00076, Espoo, Finland

Laboratory set-up for MeOH synthesis

Dong, Y., Kaario, O., Hassan, G., Ranta, O., Larmi, M. and Johansson, B., 2020. High-pressure direct injection of methanol and pilot diesel: A non-premixed dual-fuel engine concept. Fuel, 277, p.117932, DOI: https://doi.org/10.1016/j.fuel.2020.117932

Tri fuel combustion: pilot ignited methane with hydrogen enrichment

Experimental Setup

Comparison of Diesel-only, DF and TF combustion

Note: the diesel-only mode, we use the same amount of diesel as used in DF and TF mode.

Contact: Prof. Ville Vuorinen <u>ville.vuorinen@aalto.fi</u> +358503611471 Dr. Cheng Qiang <u>qiang.cheng@aalto.fi</u> +358 50 4725736

Comparison of TF combustion with various H2 concentration

CAHEMA project

Aim (at Aalto): Experimental characterization of ammonia combustion

Ammonia spray characteristics

- Ammonia optical ٠ engine tests
- Ammonia + diesel pilot
- Ammonia + H_2 + diesel pilot
- Dual-fuel/Tri-Fuel/RCCI

Contact: PhD Ossi Kaario Senior Scientist at Aalto ossi.kaario@aalto.fi +358 50 3012051

AdvanceFuel (End-use performance assessment)

- www.advancefuel.eu
- H2020 EU project
- Transport fuel candidates in various transport sectors

Contact:

Conclusions and take away

- 1. Large company driven and academic activities on PtX: hydrogen production, CO2 sequestration, fuel synthesis
- 2. Large company driven and academic activities on XtP, especially for marine and off-road sectors: methanol, neat hydrogen, methane-hydrogen blends, ammonia

Thank You for your attention!

Questions, answers, and comments

Q. Any experiences (robustness, tribology, oil interactions...)of methanol usage in shipments, ferry, or any else? Is it too early to apply?

A. We have been running the methanol engine in such way. We have experiences on the oil. My feeling is that we should have to use different kind of oil specification. Otherwise, I'm not very concerned about methanol usage. Methanol combustion is pretty doable. We are working on port-fuel methanol injection (not published).

C. Comment with the methanol combustion. Port-fuel injection or early direct injection, lots of communication with lubrication oil. Then fuel, lubrication oil interaction will be quite severe. Otherwise, interaction with lubrication oil will be much smaller.

ReFuel 2021

An efficient way of e-fuel production

Seok Ki Kim Korea Research Institute of Chemical Technology

About the speaker:

- Senior Research Scientist at KRICT, Republic of Korea
- PhD at Seoul National University
- Postdoctoral research career at Korea Institute of Science and Technology (KIST) and Brown University

An Efficient Way of e-fuel Production

ReFuel 2021 Korea Research Institute of Chemical Technology (KRICT) Seok Ki Kim

Contents

Introduction	Process	Catalyst	Scale up	Acknowledgement
• Power-to-X	• Demo plants	Catalyst for direct process	• Pilot plant	Contributions
• Energies	• Direct vs Indirect	• Theory	• Product distribution	• Funding
Density comparison	• PtL+PtG hybrid	Theory	• Summary	

Introduction: Power-to-X

- Power to X: A process producing chemicals using renewable power
- Carbon-neutral cycle implemented
- Large-scale renewable energy storage
- Energy-efficient process required

3

Energy density comparison

PtX demonstration

- RWGS: High CO₂ conversion
- FTS: Broad HC distribution
- High T + Low T is disadvantageous to energy efficiency
- Co-catalyzed FTS requires additional upgrading process

Indirect vs Direct

Indirect vs Direct (+PtG)

Comparison of P2L and P2G

Item	P2L	P2G
Product revenue	Higher	Lower
Product energy density	Higher	Lower
Product storage & transportation	Easier	Harder
Main reaction	Fischer-Tropsch	Methanation
Conversion in the reaction	Incomplete	Complete
Selectivity in the reaction	Lower	Higher
Byproducts in the reaction	Gaseous HC, CO	-
Reactor	Iso-thermal	Simpler

• Direct process shows higher energy efficiency and CO₂ reduction rate

Mini-pilot operation

Product analysis

Product analysis

Total paraffin selectivity (%)	31.1	
n-paraffin	18.7	
branched-paraffin	12.4	
Total olefin selectivity (%)	49.2	
1-olefin	46.9	
internal-olefin	0.5	
branched olefin	1.8	
Olefin distribution in C2-C4 (%)	84.3	
Olefin distribution in C5-C20 (%)	61.0	
Mass balance (%)	93.7	

CO ₂ conversion	CO selectivity	Molar carbon distribution (%)				Oxygenate Selectivity	α	
(%)	(%)	CH₄	$C_2 = -C_4 =$	$C_2^{0}-C_4^{0}$	C5+	Wax (C30+)	(%)	
39.7	7.6	9.7	25.5	4.7	55.0	5.1	12.1	0.73

Deactivation test

Summary

m	nati		
		• ••••	

- E-fuel has high energy density
- Large scale CO₂ reduction available

Production

- Direct hydrogenation is energy-efficient
- SNG production increases economic feasibility

👔 KRICT catalyst process

- > 40% yield catalyst was developed
- 5 kg/day pilot plant is being demonstrated

- Sun-Mi Hwang, Seung Ju Han, Hae-Gu Park, Hojeong Lee, Kwangjin An, Ki-Won Jun,* Seok Ki Kim*
 "Atomically alloyed Fe-Co catalyst derived from a N-coordinated Co single-atom structure for CO₂ hydrogenation" ACS Catalysis, 11, 2267-2278 (2021)
- Ruxing Gao, Chundong Zhang, Ki-Won Jun, Seok Ki Kim, Hae-Gu Park, Tiansheng Zhao, Lei Wang, Hui Wan, Guofeng Guan "Transformation of CO₂ into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis" Fuel, 291, 120111 (2021)
- Kwang Young Kim, Hojeong Lee, Woo Yeong Noh, Jungho Shin, Seung Ju Han, Seok Ki Kim, Kwangjin An*, Jae Sung Lee*,
 "Cobalt Ferrite Nanoparticles to Form Catalytic Co-Fe Alloy Carbide Phase for Selective CO₂ Hydrogenation to Light Olefins" ACS Catalysis, 10, 8660-8671 (2020)
- Seung Ju Han, Sun-Mi Hwang, Hae-Gu Park, Chundong Zhang, Ki-Won Jun, Seok Ki Kim*, "Identification of active sites for CO₂ hydrogenation in Fe catalysts by first-principles microkinetic modelling" Journal of Materials Chemistry A, 8, 13014-13023 (2020)
- Sun-Mi Hwang, Chundong Zhang, Seung Ju Han, Hae-Gu Park, Sunkyu Yang, Yong Tae Kim, Ki-Won Jun,* Seok Ki Kim*, "Mesoporous carbon as an effective support for Fe catalyst for CO₂ hydrogenation to liquid hydrocarbons" Journal of CO₂ Utilization, 37, 65-73 (2020)
- Sun-Mi Hwang, Seung Ju Han, Ji Eun Min, Hae-Gu Park, Ki-Won Jun*, Seok Ki Kim*,
 "Mechanistic Insights into Cu and K promoted Fe-Catalyzed Production of Liquid Hydrocarbons via CO₂ Hydrogenation" Journal of CO₂ Utilization, 34, 522-532 (2019)
- Chundong Zhang, Ruxing Gao, Ki-Won Jun*, Seok Ki Kim, Sun-Mi Hwang, Hae-Gu Park, Guofeng Guan,
 "Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power: Techno-economic analysis" Journal of CO₂ Utilization, 34, 293-302 (2019)

Acknowledgements

25

Thank you

Questions, answers, and comments

Q. How is the robustness of direct Fischer-Tropsch (FT) compared with the conventional two-stage FT?

A. The robustness of the direct FT depends on the Fe catalyst, which has rather unstable characteristics. This needs to be overcome by adding secondary metals like Zn and Cu.

ReFuel 2021

Mobile Carbon Capture (MCC)

Esam Hamad Saudi Aramco

About the speaker:

- Senior Research Science Consultant at Aramco Services Company, USA
- PhD at University of Illinois
- Academic career as professor at Florida International University and at King Fahd University of Petroleum and Minerals

Mobile CO₂ Capture

Esam Hamad Aramco

where energy is opportunity research & innovation

Mobile Carbon Capture Objective

Develop <u>practical</u> solutions for CO₂ capture from mobile sources at a <u>reasonable cost</u> and with <u>minimum impact</u> on vehicle performance

Mobile Carbon Capture Challenges and Opportunities

Challenges

- Distributed systems (reduced economy of scale)
- Limited space
- Need for offloading infrastructure

Opportunity

- Some free energy (waste heat)
- One option to meet transportation regulations

Long term road vehicles target: 60% CO2 capture without consuming extra fuel

³ Saudi Aramco: Company General Use aramco research & innovation

Mobile Carbon Capture (MCC): Overview

MCC System Overview

5

Saudi Aramco: Company General Use

Target: Is 60% CO2 capture achievable?

Potential Coolant Heat for CO₂ capture

6

aramco

research & innovation

CO₂ compression energy from exhaust gas waste heat

Saudi Aramco: Company General Use

research & innovation

CO₂ Capture Technologies

Continuous evaluation and improvement

9

Saudi Aramco: Company General Use

Feasibility Prototype (2011): New Solid Sorbent

- Temperature Swing Adsorption
- Showed <u>feasibility</u> under <u>real driving</u> conditions
- 10% CO2 capture
 - Developed novel high temperature sorbents: CO_2 capacity ~ 27 wt%, now 40+ wt%

Passenger Prototype (2013): Compactness & Solvent capture

11

Saudi Aramco: Company General Use

Passenger Vehicle Prototype

Most of the capture system underneath the car

Regeneration tank close to engine under the hood

Chassis Dyno Drive Cycle Test

Passenger Vehicle Prototype

13

Saudi Aramco: Company General Use

Heavy Duty Vehicle (2020): Solvent capture and Multiple energy saving technologies

Heavy Duty Vehicle: Tractor-Trailer Prototype

Sized for 40% capture rate with 200 gallons of fuel

15

Saudi Aramco: Company General Use

Marine Carbon Capture (2021) Feasibility Study

- Collaboration within OGCI (Oil and Gas Climate Initiative)
- Solvent capture selected (four technologies evaluated)
- Densification: Liquification could be an option
- Technically feasible but economics could be challenging for some vessels
 - Burn extra fuel for vessels that already use waste heat (economizer)

Small Scale Marine Demo: Mitsubishi, K-Line and ClassNK "CC-Ocean"

- Very small split stream in a coal carrier vessel
- Liquid solvent
- No waste heat recovery, densification or storage
- Evaluate swaying and vessel crew operation

17

Saudi Aramco: Company General Use

What To Do With the Captured CO2?

CO2 infrastructure maps

19

Saudi Aramco: Company General Use

Mitigating MCC cost

MCC will be economically feasible in carbon regulated markets

Conclusions and Future Plans

Conclusions

- Mobile Carbon Capture is **technically feasible** for road vehicles and marine vessels
- Different capture technologies have their own pros and cons
 - Solvent systems have the best potential
- Commercialization will depend on future regulations and overcoming challenges

Future Plans

- Improve competitiveness
 - Cost
 - Compactness

21

Saudi Aramco: Company General Use

Questions, answers, and comments

Q. Can you give us the feeling for semi-trucks? How heavy do you assess the complete carbon storage system you have on the truck. Do you assess it to be 1 ton or less?

A. It's a good question. So, of course, it depends on how much fuel you have. CO2 is about three times heavier than fuel. Because, you are adding 2 atoms of oxygen. In this case, you are capturing 40% of CO2 from fuel, and the fuel tank is about 200 gallons of diesel. So, initially, when you have only fuel, the way to assess them without the CO2, it is about 1 ton. A bit over 1 ton. It is not optimized for weight. Because we wanted to do some research evaluation. As the vehicles goes, you are adding directly to CO2, but, losing the weight of fuel. So you are adding to the weight a little bit. 40% times 0.3 minus 1. This is roughly how much it will be.

Q. You mentioned the solvent system in its best potential to separate CO2. But, I think there are good membranes such as Zeolite that can withstand high temperature and pressures. It is also a good candidate. I would like to know your opinion.

A. I agree. There is no method that is perfect. There are pros and cons. Zeolite as solid solvent, they have some challenges. The watcher will reduce the CO2 capacity a lot. So, you have to dry the whole exhaust gas. So, you need more equipment and energy. If we put Zeolite in membranes, you need driving force. So, you need to compress the exhaust gas or create vacuum on the other side of membrane. All these require mechanical energy. From our calculations, we have heat energy available already. Converting heat energy to mechanical energy, we lose efficiency. However, there is a challenge for low temperature. It is possible. I'm not saying it is not possible.

Q. I have a question about the phase of the stored CO2. Is it stored as liquid or compressed gas?

A. It is a supercritical fluid. If it is in cold temperature, it is typically in supercritical gas.