

Gutachten für den 5. Untersuchungsausschuss der 18. Wahlperiode des deutschen Bundestags

Einleitung, Vorgehensweise bei der Erstellung dieses Gutachtens

Zunächst freue ich mich darüber und fühle mich geehrt, für ein wichtiges Kontrollgremium des höchsten deutschen Parlaments als Sachverständiger eine Stellungnahme erarbeiten zu dürfen.

Aufgrund der Vielschichtigkeit der gesamten Thematik unterteile ich mein Gutachten insgesamt in 4 Teile.

Der erste Abschnitt (Teil 1) beinhaltet eine allgemeine Bewertung der Emissions- und Immissionssituation. Insbesondere werden wesentliche Fragestellungen erläutert, die im Zusammenhang mit motorischen Emissionsthemen und der hieraus resultierenden Immissionssituation zu sehen sind. Dieser erste Teil ist aus meiner Sicht vonnöten, um eine Basis für die Bewertung der Fragestellungen des 5. Untersuchungsausschusses der 18. Wahlperiode des deutschen Bundestags zu schaffen. Ferner erlaube ich mir, thermodynamisch und energietechnisch wichtige Fakten von allgemeinem Interesse zu formulieren, um wesentliche physikalische Zusammenhänge dem Leser zu erläutern.

Im zweiten Abschnitt (Teil 2) werden schließlich nach bestem Wissen die Fragestellungen, welche mir vom Vorsitzenden des Untersuchungsausschusses Herbert Behrens in seinem Schreiben vom 19. Juli 2016 mit dem Geschäftszeichen PA 31-5452-2-SV-2 zugesandt wurden, beantwortet. Hierbei konzentriere ich mich auf die Fragestellungen, welche in der Drucksache 18/8932 ab Seite -3- aufgeführt sind. Im entsprechend mir zugesandten pdf-Dokument sind diese Fragen ab Seite 13 aufgeführt.

Ferner erlaube ich mir zusätzliche Anmerkungen zur gesamten Emissionsthematik (Teil 3) und Dieselgate.

Die Ausführungen werden mit einer kurzen Zusammenfassung abgeschlossen (Teil 4).

1. Allgemeine Einleitung zur Thematik

1.1 Grundlagen der Verbrennung

Bei jedem Verbrennungsvorgang (menschlicher, tierischer oder pflanzlicher Organismus, anthropogene Verbrennung) entsteht zwangsläufig und nicht vermeidbar durch die Oxidation des Ausgangsstoffes Kohlenstoff (chemisches Element C) ein Reaktionsprodukt Kohlenstoffdioxid CO_2 . Typischerweise liegt nicht reiner Kohlenstoff als Energielieferant vor, sondern sogenannte Kohlenwasserstoffe, also ein Molekül, bestehend aus Kohlenstoff C in der Anzahl x und Wasserstoff H mit der Anzahl y mit der allgemein gehaltenen Zusammensetzung C_xH_y . Bei der Verbrennung dieses Kohlenwasserstoffes C_xH_y , also der Oxidation von C_xH_y mit Sauerstoff O_2 , resultiert zwangsläufig Kohlenstoffdioxid und Wasser H_2O als entsprechendes Verbrennungsprodukt.

So ist die Verbrennung von Holz, Kohle, Kohlenhydraten, Erdgas oder flüssigen Kohlenwasserstoffen, allgemein bekannt als Brennstoffe – wie zum Beispiel Benzin, Heizöl, Diesel, Kerosin - sehr ähnlich. Lediglich der Anteil der Abgasbestandteile CO₂ und H₂O unterscheidet sich. Bei reiner Kohle entsteht beispielsweise kein Wasser im Abgas.

Die Bildung von CO₂ skaliert also linear mit dem verbrannten Kohlenstoff. Doppelter Verbrauch des Ausgangsbrennstoffes bedeutet doppelte CO₂-Bildung. Der CO₂-Gehalt hat keinen maßgeblichen direkten Einfluss auf die Gesundheit.

Neben CO₂ und H₂O als unvermeidbare Verbrennungsprodukte gibt es zusätzlich die sogenannten theoretisch vermeidbaren oder auch unerwünschten Verbrennungsprodukte. Diese können bei entsprechend hoher Konzentration gesundheitsschädlich sein. Typische theoretisch vermeidbare, unerwünschte Verbrennungsprodukte sind im Folgenden aufgeführt:

Unverbrannte Kohlenwasserstoffe, sogenannte HC- Emissionen

Bei einer nicht vollständigen Verbrennung entstehen HC-Emissionen, da der Kraftstoff nicht vollständig oxidiert werden kann. HC-Emissionen werden alleine schon deshalb nach Kräften reduziert, da eine unvollständige Verbrennung natürlich den Wirkungsgrad reduziert. Bei modernen Verbrennungsmotoren werden die letzten verbliebenen HC-Emissionen im betriebswarmen Zustand vollständig in einem oder mehreren Abgaskatalysatoren oxidiert, also eliminiert. Typischerweise reduzieren moderne Verbrennungsmotoren sogar die HC-Konzentration der Umgebung. Sie können also die Luft in Städten reinigen! HC sind nur unmittelbar nach dem Kaltstart, wenn der Verbrennungsmotor und vor allem die Abgasnachbehandlung nicht auf Betriebstemperatur sind, überhaupt relevant, ansonsten bedeutungslos. Die Umweltmessstationen zeichnen diese Komponente typischerweise gar nicht mehr auf. Im Volllastbereich gibt es bei Ottomotoren noch einen HC-Beitrag durch die Volllast-Anfettung. Der HC Beitrag der Verbrennungsmotoren (Otto- und Dieselmotoren) ist trotzdem vernachlässigbar.

HC-Emissionen sind eine mit der Nase deutlich wahrnehmbare Komponente (zur Erläuterung und allgemeinen Information erläutere ich die Emissionskomponente über die Geruchswahrnehmbarkeit), die man beispielsweise bei Oldtimern wahr-

nehmen kann. Der "klassische" Abgasgeruch von Ottomotoren (4-Takt und 2-Takt) kommt von HC-Emissionen. Sie sind bei modernen Fahrzeugen nicht mehr relevant.

Kohlenstoffmonoxid, sogenannte CO- Emissionen

Für CO gilt das Gleiche wie für HC im obenstehenden Absatz. CO wirkt in hoher Dosierung toxisch, da es eine ca. 200-fach höhere Affinität zum Hämoglobin als Sauerstoff aufweist.

CO-Emissionen sind mit der Nase nicht wahrnehmbar. CO-Emissionen von Verbrennungsmotoren sind nicht mehr relevant.

Partikelemissionen

Größte Aufmerksamkeit der Öffentlichkeit haben Partikelemissionen. Unstrittig sind zahlreiche wissenschaftliche Publikationen, welche das toxische Verhalten von Partikeln in entsprechender Konzentration auf den menschlichen Organismus nachweisen. Auf eine genauere Differenzierung verschiedener Partikel wird an dieser Stelle verzichtet. Bei der Immissionsgesetzgebung werden vor allem PM10 Partikel zusammengefasst, also alle Partikel mit einer Größe unterhalb von 10µm.

Erhöhte Partikelkonzentration in der Luft kann zu einem Feinstaubalarm führen. Dieser wurde in Stuttgart in diesem Jahr bereits mehrmals ausgerufen. In Stuttgart und Ulm ist der Beitrag der verbrennungsmotorischen Partikeln zur Gesamtbelastung jedoch nur ca. 7 Prozent (siehe Abbildung 1)! Dieser Anteil wiederum resultiert im Wesentlichen aus zahlreichen Altfahrzeugen ohne Partikelfilter der Gesamtfahrzeugflotte. Mit der Einführung des Partikelfilters ist der Partikelbeitrag des Dieselmotors vernachlässigbar. Messungen zeigen eine geringere Partikelkonzentration des Abgases als der Stadtluft bei Dieselmotoren mit Partikelfilter DPF (Diesel Partikel Filter).

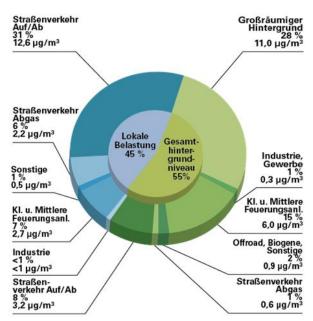


Abbildung 1: Anteil der motorischen Abgase an der Partikelbelastung in Stuttgart – Umweltmessstation Stuttgart Neckartor [1]

Insgesamt sind in Europa die Partikelemissionen der Emittenten Industrie und Verkehr in den letzten 10 Jahren deutlich reduziert worden. Die Emissionen der Segmente Landwirtschaft, private Haushalte, Energiebereitstellung oder Abfallwirtschaft sind jedoch angestiegen (siehe z.B.: [2]). Auch die oben beschriebene Tatsache, dass Verbrennungsmotoren nur untergeordnet zur Partikelbelastung beitragen, ist nicht neu (siehe z.B. [3]). Wissenschaftliche Studien zeigen, dass auch bei Zero-Tailpipe Emissionen des Verbrennungsmotors der Verkehr durch Aufwirbelungen, Bremsstaub, Verschleiß, Abrieb, Fahrbahnbelag, etc. nennenswert zur PM-Immission einen Beitrag leisten wird (siehe z.B. [4], [5]). Auch feinere Partikelemissionen (PM2.5) spielen beim Diesel eine marginale Rolle, da die Partikelfilter bis zur unteren Messgrenze, die der Gesetzgeber mit mindestens 23nm definiert (23nm = 0,023μm), einen hohen Abscheidegrad aufweisen.

Der Partikelfilter ist ein komplexes Bauteil, welches im Betrieb vor allem den Kohlenstoff (Ruß) filtert. Dieser muss jedoch zeitweise oder kontinuierlich verbrannt werden, um eine zu große Partikelbeladung zu vermeiden. Die Folge einer zu großen Partikelbeladung ist der Durchbrand des Partikelfilters (Abbildung 2). Bei diesem Durchbrand können auch stromabwärts angebrachte Komponenten zerstört werden (z.B. SCR-Katalysator)

Abbildung 2: Folgen einer unerwünschten Partikelfilterregeneration, DPF - Durchbrand Rußbeladung = 100 [g], T_{Regeneration} = 650 [°C] [6]

Partikel-Emissionen des Verbrennungsmotors sind mit der Nase typischerweise wahrnehmbar. Ihr Beitrag ist bei Motoren mit Partikelfilter über die gesamte Partikelgrößenverteilung hinweg vernachlässigbar. Der Beitrag von Ottomotoren ohne Partikelfilter ist Gegenstand der aktuellen Gesetzgebung. Es wird beginnend mit Einführung von EURO6d-Temp zu einer umfassenden Einführung des OPF (Otto Partikel Filter) kommen. Die Einführung des Dieselpartikelfilters war eine komplexe Herausforderung.

Stickstoffoxidemission, auch Stickoxidemission oder auch NO_x-Emission

Die Thematik "dieselgate" betrifft im Wesentlichen die Stickoxidemissionen. Wichtig ist die Differenzierung zwischen NO_x und NO_2 . NO_x ist die Zusammenfassung aller Stickstoffoxidkombinationsmöglichkeiten (insgesamt gibt es 9). Relevant sind NO, NO_2 und Lachgas N_2O . Typischerweise enthält das Abgas überwiegend NO! Bei Ottomotoren ist die NO Emission übrigens aufgrund des typischerweise eingesetzten Drei-Wege-Katalysators geringer als bei Dieselmotoren. Wichtig ist, dass vor allem NO_2 und nicht NO steht im Fokus, ab einer gewissen Konzentration einen Einfluss auf die Gesundheit zu nehmen. NO_2 wird mit einer Totzeit von einigen Stunden in der Atmosphäre in einem

komplizierten Mechanismus aus NO gebildet. Lachgas N₂O wird in Zukunft als Sekundäremission ebenfalls reglementiert werden, da es beispielsweise an Kupfer- Zeolithen (ein häufig eingesetztes Substrat für die selektive katalytische Reduktion SCR) gebildet werden kann. Es werden jedoch keine wesentlichen Schwierigkeiten erwartet.

Der Beitrag von Verbrennungsmotoren zur lokalen NO₂-Belastung bewegt sich in der Größenordnung von circa 50 bis 70%, wie Abbildung 2 zeigt.

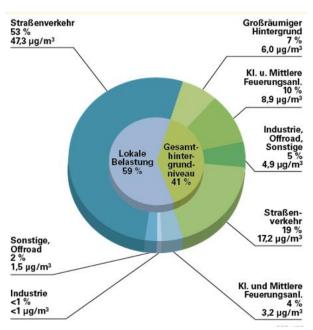


Abbildung 3: Anteil der motorischen Abgase an der NO₂-Immission in Stuttgart – Umweltmessstation Stuttgart Neckartor [1]

Prinzipiell gilt es, zwischen NO_x und NO₂ auch emissionsseitig zu differenzieren.

Vor allem für die frühen DPF-Anwendungen EURO4 und EURO5 ist neben den erhöhten Stickoxidemissionen die Tatsache für die NO₂ Immissionsbelastung nachteilig, dass der NO₂-Gehalt im Abgas erhöht war. NO₂ war als Einzelkomponente nicht reglementiert.

Durch die wichtige beschleunigte Einführung des Partikelfilters im letzten Jahrzehnt war die Motorenentwicklung vor allem bei den Emissionsstufen EURO4 und EURO5 in der Situation, eine schnelle Rußbeladung des Partikelfilters DPF, die zu einer Schädigung des DPF führen kann, auch mit Hilfe eines hohen NO₂-Anteils im Abgas zu vermeiden. Durch diesen hohen NO₂-Anteil im Abgas kann der Ruß (also Kohlenstoff C) zu CO₂ oxidiert werden. Gleichzeitig wird NO₂ wiederum zu NO reduziert. Dies wurde durch einen hohen Edelmetallgehalt im Dieseloxidationskatalysator (DOC, diesel oxidation catalyst) erreicht, der vor dem Partikelfilter angeordnet, das NO zu dem gewünschten NO₂ oxidiert. Als Konsequenz war in Summe auch der NO₂-Anteil im Abgas erhöht. Mit der Einführung der SCR-Technologie mit EURO6 für PKW hat sich dieser nachteilige Effekt wieder entschärft.

Es gibt nun im Wesentlichen zwei übergeordnete Technologieansätze zur Reduzierung der Stickoxidemissionen - motorinterne Reduzierungsmaßnahmen und die Abgasnachbehandlung.

Bei einer innermotorischen NO_x-Reduzierung ist eine Wechselwirkung mit vielen anderen Prozessgrößen (Verbrauch, Partikel, Verschmutzung, ...) gegeben. Dieser Trade-Off beschäftigt seit vielen Jahrzehnten die Verbrennungsforschung und zeigt den prinzipiellen Konflikt, der erst mit einer zusätzlichen NO_x-Abgasnachbehandlung gelöst werden kann. (Abbildung 4)

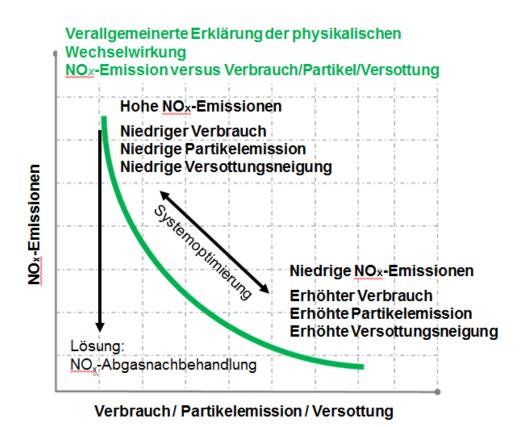


Abbildung 4: Vereinfachte Wechselwirkung zwischen innermotorischer NO_x -Optimierung und anderen Prozessgrößen

Die entscheidende motorinterne Reduzierungsmaßnahme ist die Abgasrückführung. Entscheidendes Bauteil ist das Ventil der Abgasrückführung, sowie der Kühler (AGR-Kühler), der mit EURO4 Einzug in die Serie hielt.

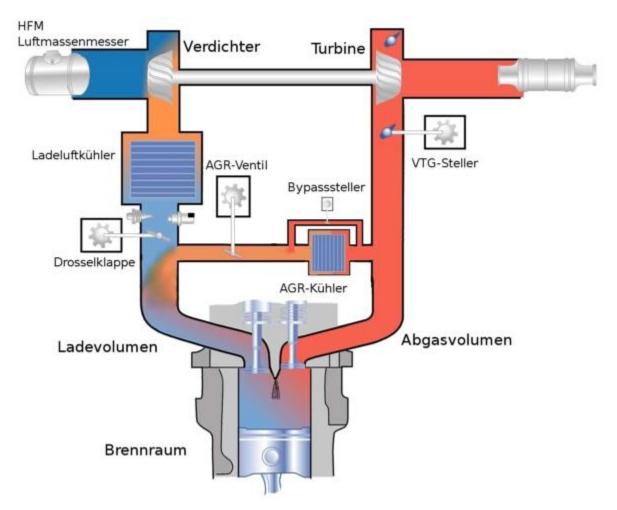


Abbildung 5: Funktionsweise der Abgasrückführung (Quelle: IAV GmbH [7])

Insbesondere das AGR-Ventil ist in seiner Funktionalität abhängig von der Temperatur des Abgases. Versottung und Verlackung sind Phänomene, die zum Ausfall des AGR-Ventils führen können. Besonders bei den Emissionsstufen EURO4 und EURO5 sind sehr hohe Ausfallraten bis oberhalb von 10% durch defekte AGR-Ventile bekannt - bedingt durch die nun niedrigere Abgastemperatur durch den Einsatz des AGR-Kühlers und unerwünschten Kondensationseffekten.

Versotteter AGR-Pfad

Neues AGR-Tellerventil

Versottetes AGR-Tellerventil

Abbildung 6: Beispiele für versottete AGR-Strecke [8] [9]

Die NO_x-Abgasnachbehandlung kann durch ein selektives katalytisches System (SCR), typischerweise ausgeführt mit einer Betankung durch die wässrige Harnstofflösung Adblue®, realisiert werden. Diese Technologie ist anspruchsvoll, nach über zehn Jahren Felderfahrung liegen jedoch zahlreiche Erfahrungswerte vor.

Alternativ ist ein Speicherkatalysator (NSK, NO_x-Speicherkatalysator) einsetzbar, auf den hier nicht detailliert eingegangen wird.

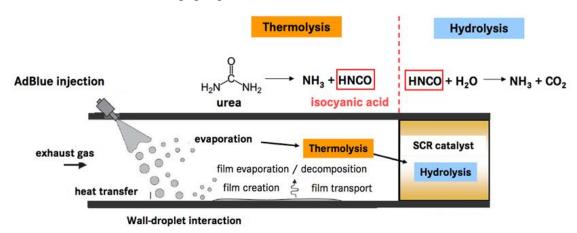


Abbildung 7: Funktionsweise der selektiven katalytischen Reduktion SCR [8]

Abbildung 7 zeigt die prinzipielle Funktionsweise des SCR-Systems. Mit dem generierten Ammoniak NH₃ können die Stickoxide im Katalysator ab ca. 180°C-200°C signifikant reduziert werden.

Ebenfalls ist die Thermolyse und Hydrolyse des Abgases sehr temperaturabhängig. Vor allem unterhalb von circa 180°C Abgastemperatur bilden sich unerwünschte organische Ablagerungen. Diese Ablagerungsbildung ist per Applikation unbedingt zu vermeiden, jedoch tritt sie in vielen Anwendungen über der Laufzeit auf. In der Abbildung 8 sind leichte Ablagerungen an der SCR Mischeinheit zu sehen. In der Realität können erhebliche Ablagerungen die Funktion des SCR-Systems schädigen.

Abbildung 8: Beispiele für Ablagerungsbildung im Abgastrakt an einer SCR-Mischereinheit [8]

NO-Emissionen sind mit der Nase nicht wahrnehmbar. Sehr wohl sind NO₂-Emissionen im Abgas wahrnehmbar. Es riecht chlorartig und unangenehm reizend. Der Verbrennungsmotor, hier dominierend der Dieselmotor, ist eine wesentliche

Quelle von NO und NO_2 und somit für die NO_2 -Immission noch wesentlich verantwortlich. Circa zwei Drittel der NO_2 Immissionsbelastung ist noch auf den Dieselmotor zurückzuführen. Wesentliche Technologien zur NO_x -Emissionsreduzierung sind die Abgasrückführung und die SCR-Technologie. Vor allem die SCR-Technologie ist temperaturabhängig. Unterhalb von ca. 180° C Abgastemperatur ist die Dosierung von Adblue® und somit die Konvertierung sehr kritisch.

Schwefeldioxid

Schwefeldioxid war z.B. in den 1960er, 70er bis in die 1980er Jahren ein Thema und bildete einen nachteiligen Beitrag zum Waldsterben. Schwefeldioxid wird im Wesentlichen aus dem im Kraftstoff befindlichen Schwefel gebildet. Heutige Kraftstoffe in Mitteleuropa weisen einen sehr geringen Schwefelgehalt (EN590) unterhalb von 10ppm auf.

SO_x-Emissionen sind mit der Nase wahrnehmbar. Gleichwohl spielen sie heute keine Rolle mehr. Der SO_x-Beitrag des Verkehrs kann vernachlässigt werden.

Zusammenfassung: dieselmotorische Emissionen

Die Reduzierung sämtlicher unerwünschter Emissionskomponenten des Dieselmotors mit Ausnahme der NO_x -Thematik wurde technisch realisiert und ist in die Serie überführt worden.

Als letzte verbliebene Komponente verbleibt die NO_x -Emission. Details zur Bewertung der NO_x -Emission sind untenstehend im Absatz 1.3 aufgeführt. Alle anderen bekannten Emissionskomponenten (CO, HC, SO_x , Partikel, NH3) des Dieselmotors sind mittlerweile als untergeordnet zu bezeichnen.

1.2 Grundlagen der Emissionsgesetzgebung

Grundlage für die PKW - Zertifizierung war bis inklusive der EURO6b Gesetzgebung der sogenannte neue europäische Fahrzyklus NEFZ.

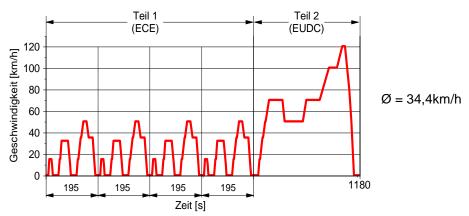


Abbildung 9: NEFZ Fahrzyklus [10]

Der NEFZ war nicht als Zyklus geplant gewesen, der einen realistischen Verbrauch ausweist. Vielmehr war bei seiner Definition in den frühen 1990er Jahren eine wesentliche Motivation gewesen, eine Vergleichbarkeit der verschiedenen Fahrzeuge zu erzielen,

um für eine Emissionsgesetzgebung eine gemeinsame Basis zur Verfügung zu stellen. Das Fahrprofil des NEFZ bildet die Realität nicht ab. Ebenfalls werden verbrauchserhöhende Umstände, die einen Anstieg des Verbrauches und der Emissionen zur Folge haben, wie beispielsweise Gewicht, Aerodynamikbeeinflussung oder Sonderausstattungseffekte (Klimaanlage etc.) nicht berücksichtigt.

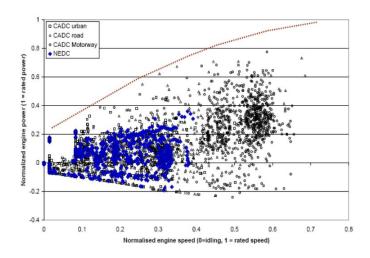


Abbildung 10: NEFZ Betriebsbereich im Motorkennfeld, x-Achse: Motordrehzahl y-Achse: Motorlast (äquivalent Drehmoment) [11]

Abbildung 10 demonstriert, dass im NEFZ Betrieb nur geringe Kennfeldbereiche im Motordrehzahl/Motorlast-Kennfeld (blau) überhaupt tangiert werden. Ein Großteil des Motorkennfeldbereiches ist durch den Prüfzyklus nicht tangiert. Bei anderen Tests (z.B. CADC Common Artemis Driving Cycle) verhält sich dies anders, wesentliche relevante Kennfeldbereiche werden im Zertifizierungstest berücksichtigt.

Für die Durchführung einer Emissionszertifizierung muss nun ein zu zertifizierendes Fahrzeug auf einem Rollenprüfstand vermessen werden. Hierfür ist die Kenntnis der Fahrwiderstände des Fahrzeuges notwendig. Diese werden vom Hersteller über Ausrollkurven bestimmt. Die derart bestimmten Fahrwiderstände werden dem Rollenprüfstand überliefert. Die Hersteller nutzen bei der Bestimmung der Ausrollkurven mehrere Maßnahmen aus, um eine möglichst günstigen Fahrwiderstand erzielen zu können (Reifenkondition, Gewicht, Aerodynamikoptimierung, ...) [11].

Seit den 1990er Jahren sind weltweit unterschiedliche Fahrzyklen verabschiedet und als Grundlage der Zulassung gesetzt worden. In USA z.B. gilt beispielsweise die Federal Test Procedure FTP 75 als Stadtzyklus mit 34,1km/h (angelehnt an eine Berufsverkehrsfahrt in Los Angelos 1977) und ein Highway Fuel Economy Driving Schedule (HWFET) mit 77,7km/h.

Angestoßen von der UN Arbeitsgruppe Emission und Energie (GRPE) sind 2007 Gespräche zu einer Vereinheitlichung dieser den Emissionsvorgaben, der Verbrauchsbewertung und der On-board-Diagnose zugrundeliegenden Zyklen gestartet worden. Der Arbeits-

kreis World Forum for Harmonization of Vehicle Regulations (WP.29) trifft sich erstmals am 04.06.2008.

Das Protokoll des ersten WLTP-Arbeitskreistreffens nennt die Mitarbeit der OICA als notwendig und Januar 2010 als Terminziel. In 2009 wurde dann das Projekt in Phasen aufgeteilt und für die Phase 1 das Ziel 2014 benannt. Wesentlicher Fokus der WLTP-Diskussion ist die vergleichbare Bewertung des Fahrzeugverbrauches. Leider haben sich die USA aus den WLTP Aktivitäten zurückgezogen. In Europa wird daran festgehalten. Der WLTP besteht aus drei Leistungsklassen, von denen die schärfste Klasse ab 34kW/Tonne Fahrzeuggewicht die meisten PKW einschließt. Der Fahrzyklus, auf dem die WLTP Testprozedur (WLTP) basiert, lautet WLTC (Worldwide harmonized Light vehicles Test Cycle) und enthält für europäische Zulassungen einen sogenannten "extrahigh" Bereich mit Geschwindigkeiten von bis zu 131km/h.

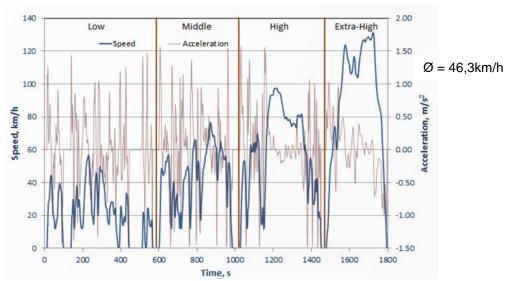


Abbildung 11: WLTC Testzyklus class 3 ab 34kW/t Fahrzeuggewicht. [12]

Im Gegensatz zum NEDC werden beim WLTP Sonderausstattungen für Gewicht, Aerodynamik und Bordnetzbedarf (Ruhestrom) berücksichtigt. Insgesamt werden realitätsnähere Emissionsangaben im WLTP Testverfahren erwartet.

Der WLTC ist zwar dichter am Realbetrieb der Fahrzeuge, bleibt aber ein Prüfstandzyklus und kann viele Effekte und Toleranzen v.a. des Fahrers und des Umfeldes nicht nachbilden, die im Realfahrbetrieb auftauchen. So wirken sich ein aggressiver Fahrstil und z.B. falsche Gang-Wahl nachteilig auf Verbrauch und Emissionen aus.

Aus diesem Grund sind zusätzliche reale Emissions- und Verbrauchsmessungen mit Hilfe eines portablen Emissionsmesssystems (PEMS) initiiert worden.

Insgesamt gibt es eine Vielzahl an möglichen Prüfzyklen (Abbildung 12). Glücklicherweise ist mit dem WLTC ein vernünftiger Kompromiss entstanden. Neben dem Prüfzyklus sind weitere Fragestellungen für die Testdurchführung entscheidend wie Fahrwiderstand oder Fahrzeugtemperaturkonditionierung.

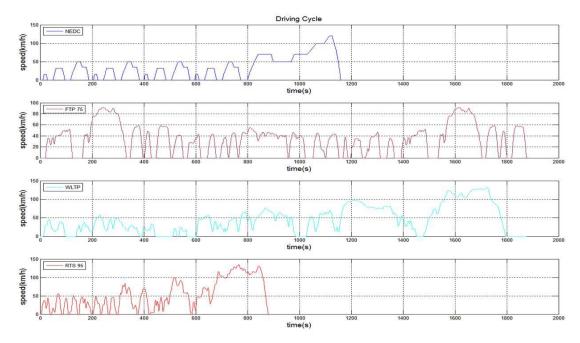


Abbildung 12: Vergleich der Geschwindigkeitsprofile unterschiedlicher Testzyklen. (Daten gemäß Richtlinie 70/2207EWG, EEC Directive 90/C81/01, CFR 40, 86, App.I, FTP 75) [12]

Mit Einführung der neuen EURO6d-Temp Gesetzgebung, startend mit der Typenprüfung ab September 2017, wird der WLTC nun der Referenzzyklus. Der Gesetzgeber hat mit Einführung dieser Emissionsnorm ein Einführungsszenario für neue Fahrzeugvarianten ab 2017 und bis 2019 für Neufahrzeuge beschlossen. Wichtige technische Randbedingungen befinden sich aktuell noch immer in der Diskussion.

1.3 Bewertung der NO_x-Emissionsentwicklung

Im Verlauf der letzten 25 Jahre wurden die NO_x-Emissionen in Deutschland in etwa halbiert. Der Sektor Verkehr trug überproportional zu einer Reduzierung bei. Von ca. 1400 Tsd. Tonnen wurden bereits zwei Drittel der Stickoxidemissionen reduziert.

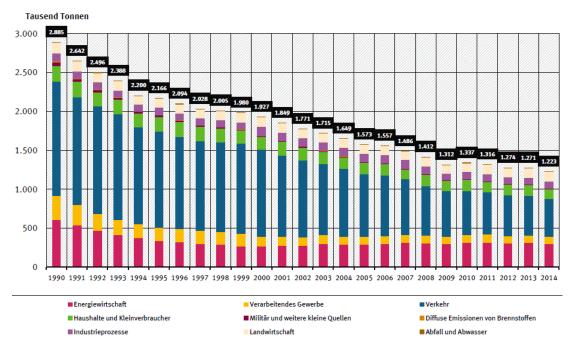


Abbildung 13: Quellen der Stickoxidemissionen [13]

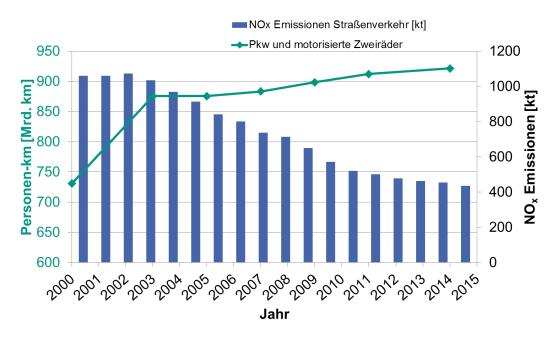


Abbildung 14: Verlauf der PKW-Jahresgesamtfahrleistung (PKW und motorisierte Zweiräder) im Vergleich zur NO_x Emissionsentwicklung [14]

Grundsätzlich ist mit der Einführung verschärfter Emissionsgrenzen für Personenfahrzeuge und Nutzfahrzeuge eine deutliche Reduktion der Emissionen erzielt worden. Abbildung 14 zeigt zudem den Rückgang der Stickoxidemissionen (NO_x). Die unmittelbaren NO₂ Emissionen sind leider nicht zurückgegangen (nicht dargestellt). Insgesamt ist der

Rückgang der NO_x Emissionen vor allem vor dem Anstieg der Gesamtfahrleistung und der deutlichen Stauzunahme zu beachten.

Gleichwohl ist bekannt, dass die realen Stickoxidemissionen der Personenfahrzeuge teilweise deutlich oberhalb des Grenzwertes liegen.

Prinzipiell ist eine Reduzierung der PKW-Stickoxidemissionen (siehe Abbildung 15) erreicht worden. Die Differenz zwischen Straßenmessung und Realemission lag im Mittel relativ konstant bei circa 500mg.

Diese Lücke zwischen den Realstickoxidemissionen und dem Emissionsgrenzwert ist zu schließen. Die hierfür initiierte RDE (EURO6d-Temp, EURO6d) Gesetzgebung bewirkt dies bereits bei den neuesten Modellen ausgewählter Hersteller. Die Aktivitäten für die RDE-Gesetzgebung und die entsprechenden Fahrzeuge starteten deutlich vor den "dieselgate".

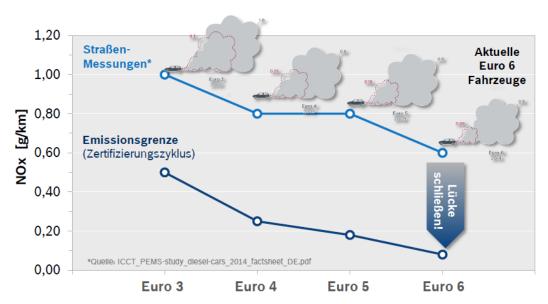


Abbildung 15: Quellen der Stickoxidemissionen [15] (Quelle Daten: Umweltbundesamt 2013, ICCT Messungen)

Erwähnung verdienen die beiden Emissionsstufen (250mg NO_x/km) und EURO5 (180mg NO_x/km). Bei der Einführung von beiden Emissionsstufen war eine NO_x-Abgasnachbehandlung für PKW-Anwendungen aus verschiedenen Gründen nicht einsetzbar. Die Erfahrungen beispielweise mit dem Speicherkatalysator NSK waren durchaus kritisch. Auch waren die Zeitleisten einer möglichen NSK-Einführung für EURO5 kritisch, sofern ein Einbau fahrzeugabhängig überhaupt möglich war. Die Einführung im NAFTA Markt für ausgewählte Varianten war eine Einzellösung, aus der zahlreiche Erfahrungswerte im Feldversuch gewonnen wurden. Für einen Einsatz der Speicherkatalysatortechnologie für die Emissionsstufe EURO5 hätte circa im Jahr 2004 aufgrund der Entwicklungszeitleisten die Entscheidung für dessen Einsatz getroffen werden müssen. Zum damaligen Zeitpunkt war die Technologie zu riskant. Die SCR-Technologie, die bei den Nutzfahrzeugen seit 2004 im Serieneinsatz ist, war für die damalige PKW Fahrzeugwelt noch nicht einsetzbar.

Dies führte zum Zwang, die NO_x-Grenzwerte bei EURO4 und EURO5 innermotorisch realisieren zu müssen.

Höchste Priorität und größter Druck der Öffentlichkeit hatte damals die zuverlässige Etablierung des Partikelfilters bei gleichzeitiger Verbrauchsoptimierung der Dieselfahrzeuge.

Es war für alle beteiligten Experten nachvollziehbar, dass niedrige NO_x -Emissionen auf Grenzwertniveau unmöglich im realen Fahrbetrieb unter allen Fahrzuständen mit der damaligen Technologie realisiert werden konnten. Bereits die Erfüllung der Stickoxidemissionen ausschließlich im Testbetrieb stieß bei vielen Applikationen an physikalische Grenzen. Die Gesetzgebung kollidierte klar mit den technisch verfügbaren Mitteln, wenn die Vorstellung eine Emissionseinhaltung im Realbetrieb unter allen Fahrzuständen gewesen sein sollte.

Entwicklungsseitig musste auf eine Vielzahl an komplexen Anforderungen geachtet werden, beispielsweise:

- Bauteilschutz Partikelfilter (Rußbeladung)
- Bauteilschutz Abgasrückführpfad (Abgastemperatur)
- Stickoxidemissionen
- Verbrauch
- Allgemeine Robustheit (z.B. Ölverdünnung, Regenerationsfähigkeit DPF,...)
- Fahrbarkeit
- Komfort
- Betriebskosten
- Gewicht
- etc.

Eine Erfüllung aller Anforderungen ist mit der Technologie für EURO4 und EU-RO5 nicht möglich gewesen, wenn auch im gesamten Betriebsbereich die Stickoxide auf Grenzwertniveau sein müssen! Dies ist zweifelsohne mit größtem Aufwand untersucht worden.

Erhöhte Stickoxidemissionen im Realbetrieb ermöglichen die vernünftige Berücksichtigung von allen restlichen Randbedingungen. Dies ist der wesentliche Grund für die in den letzten Monaten intensiv kritisierte Stickoxiderhöhung.

Kritik an den Herstellern verdient bei EURO4 und EURO5 die Tatsache, dass die Erhöhung der Stickoxidemissionen im Realbetrieb teilweise sehr rigoros realisiert wurde (z.B. Schließen des AGR-Ventils unmittelbar oberhalb von 120km/h, Handhabung bei geringen Abweichungen der Umgebungstemperatur, ausschließliche Testfokussierung, signifikante NO_x-Mehremissionen bei einzelnen Fahrzeugen etc.). Man muss aber gleichzeitig bei den Emissionsnormen EURO4 und EURO5 zur Kenntnis nehmen, dass eine Erfüllung der in den letzten Monaten intensiv geäußerten Vorstellung "Einhaltung Stickoxidemission im Realbetrieb" zu keinem Zeitpunkt im Realbetrieb unter allen Betriebszuständen zur Diskussion stehen konnte. Ferner forderte die Gesetzgebung dies auch zu keinem Zeitpunkt! Die gewählte und zweifellos auch kritikwürdige technische Lösung ist ein unbefriedigender, jedoch nachvollziehbarer Kompromiss. Zwangsläufig war die Entwicklung gezwungen, überhaupt zur Realisierung von Dieselfahrzeugen (bis inkl. EURO5) entweder Abschaltbedingungen (legal) zu definieren, oder als illegale Alternative eine Zykluserkennung zu implementieren. Die Emissionskonsequenz ist weitestgehend identisch!

Mit Einführung der EURO6 Norm wurde bei den meisten Herstellern zusätzlich eine Stickoxidabgasnachbehandlung eingeführt. Im Realbetrieb führte bereits die erste Generation zu einer deutlichen Reduzierung der Emissionen.

Beispielhafte PEMS Messungen (Abbildung 16) zeigen geschwindigkeitsabhängige Realemissionen zwischen 200 und 600mg für Fahrzeuge mit Stickoxidabgasnachbehandlung (Vehicle 1, Vehicle 2).

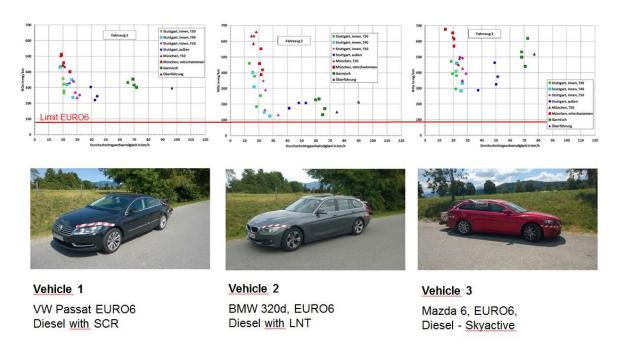


Abbildung 16: Portable Emissionsmessungen an EURO6-zertifizierten Fahrzeugen. [16]

Als neue Anforderung ist der Bauteilschutz der SCR Anlage (für Fahrzeuge mit SCR) bei der Entwicklung zu berücksichtigen. Als Herausforderung aller SCR Systeme ist das Verhalten bei Abgastemperaturen unterhalb von 200°C zu nennen. In diesem Temperaturfenster treten zu vermeidende Ablagerungen als Folge der Harnstoffaufbereitung auf. Ebenfalls existiert eine Wechselwirkung zwischen Adblue® - Verbrauch und Adblue®bedingter Fahrzeugreichweite.

Kritik an den Herstellern verdient bei EURO6 die Tatsache, dass nicht gleich mit der Einführung von EURO6 die Chance genutzt wurde, durch den neuen Freiheitsgrad der Stickoxidabgasnachbehandlung geringere Stickoxidrohemissionen zu erzielen. Applikationsseitig sind neue Optimierungspotentiale gegeben, die oftmals nicht ausgeschöpft werden. Nachvollziehbar ist gleichzeitig, dass nach über 15 Jahren allgemein relativ freier Stickoxidhandhabung im Realbetrieb diese Emissionskomponente weiterhin nicht mit der höchsten Priorität behandelt wird.

Indiskutabel sind EURO6 Applikationen mit Stickoxidemissionen sogar oberhalb von 1000mg/km im Realbetrieb – torpedieren diese doch den Technologiefortschritt und schädigen in nicht verantwortbarer Art und Weise den Ruf und die Technologie des Dieselmotors.

Unbestritten ist gleichzeitig eine deutliche NO_x-Emissionsverbesserung von EURO5 zu EURO6. Vor dem Hintergrund der seit vielen Jahren in der Entwicklung befindlichen RDE-konformen Dieseltechnologie sind die ersten EURO6 Applikationen als Überbrückungsansatz bis zum Einsatz der RDE-konform applizierten Fahrzeuge zu

sehen. Fahrzeugbedingt ungünstige SCR-Positionierungen im Fahrzeugunterbodenbereich oder unbefriedigende Einbausituationen bedingen weiterhin Kompromisse bei den ersten EURO6 Applikationen.

Mittlerweile sind erste Fahrzeuge erhältlich, welche bereits heute EURO6d-Temp vorerfüllen oder nur noch geringe Weiterentwicklungsschritte hierfür benötigen. Diese Fahrzeuge emittieren im Realbetrieb durch den Einsatz nochmals komplexerer Abgasnachbehandlungssysteme und verbesserter Emissionstechnologie nochmals weniger Emissionen. Die deutschen Fahrzeughersteller sind die ersten, welche solche Fahrzeuge am Markt anbieten. Audi, BMW, Mercedes oder VW bieten erste Produkte bereits an. Entwicklungszeiten von bis zu fünf Jahren liegen auch diesen Produkten zu Grunde.

Die neueste Fahrzeuggeneration demonstriert, dass bereits vor 5 Jahren eine deutliche Weiterentwicklung der Stickoxidemissionen angestoßen wurde. Eine Stickoxidreduzierung auf Grenzwertniveau im Realbetrieb ist erreicht worden. Die technologischen Herausforderungen sind weiterhin gegeben. Der mittlerweile erarbeitete Erfahrungsschatz erlaubt endlich eine robuste Emissionsreduzierung im gesamten Betriebsbereich.

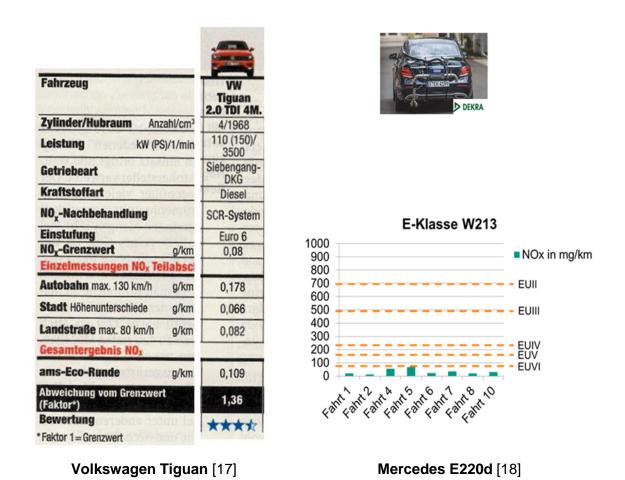
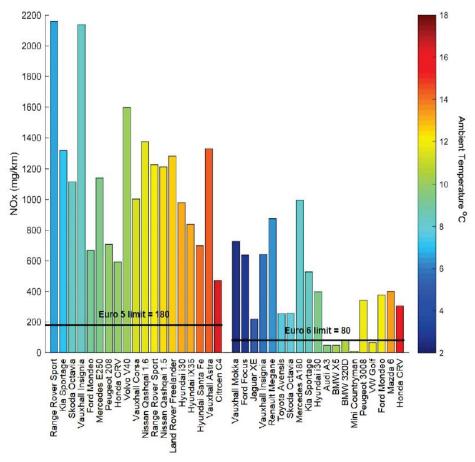



Abbildung 17: : Beispiele für Stickoxidemissionen modernster EURO6 PKW im Realbetrieb mit NO_x Emissionen bis 13 mg/km

Ein Bericht des konservativen britischen ehemaligen Ministers für Transport (Robert Goodwill) vom April 2016 behandelt die Dieselthematik. Zahlreiche Fahrzeuge wurden vermessen und die Gründe für das Emissionsverhalten recherchiert [19].

"Vehicle Emissions Testing",Department for Transport GB, 2016

Abbildung 18: NO_x-Messungen an EURO5 (links) und EURO6 (rechts) Fahrzeugen. [19]

Auch diese Arbeiten kamen zu dem Schluss, dass eine vielschichtige Situation vorliegt. Summary Unterpunkt 6.6 ist in diesem Zusammenhang erwähnenswert. Ebenfalls ist der Entwicklungsschritt von EURO5 zu EURO6 ersichtlich:

6.6 The investigation team has seen evidence from manufacturers to support their justification that without such a temperature dependant control, the EGR components and some of the fundamental elements within the engine would be materially damaged and cease to operate in the designed condition. The consequences of such damage could be a significant cost to the consumer for major repair work.

Historische Entwicklung der NO_x-Emissionen im Realbetrieb

Bereits in den 1990er Jahren ist mit EURO1 im Jahr 1992 ein NO_x-Grenzwert vorgegeben worden. EURO1 und EURO2 reglementierten noch die Summe aus HC + NO_x Emission. Dass der NEDC-Zyklus als Basis der Typprüfung nicht die kompletten Emissionen und den Verbrauch des Fahrzeuges im Realbetrieb beschreibt, war Auslöser des seit 2003

durch den ADAC durchgeführten Eco-Testes. Bei diesem Eco-Test werden neben dem NEDC-Zyklus mit aktivierten Zusatzverbrauchern (z.B. Licht und Klimaanlage) auch ein Autobahnzyklus (130 km/h) und ab 2012 ein WLTP-Zyklus gefahren [20]. Die in unterschiedlichen Fahrsituationen gemessenen Emissionen gehen in die Gesamtbewertung des Fahrzeuges und der Testergebnisse ein.

Die Betrachtung der Realemissionen erfolgt auch im Bereich der Verkehrsplanung/ Verkehrsflussplanung. Diese Analysen basieren auf den Daten der HBEFA Datenbank, die seit 1999 von INFRAS gepflegt wird [21]. Diese Datenbank basiert auf einem Fahrzeugemissionsmodell, das im Rahmen der europäischen Vereinigung European Research for Mobile Emission Sources (ERMES) weiterentwickelt wird.

Basierend auf Rollenprüfstandmessungen von Fahrzeugen wird ein sogenanntes Emissionskennfeld erarbeitet, das dann in Kombination mit Modellen die Einflussfaktoren des realen Fahrbetriebes wiederspiegelt.

Schon in der ersten Version dieser Datenbank konnten verschiedene Verkehrssituationen abgebildet werden, da z.B. der stockende Verkehr oder die Autobahnfahrt sich entsprechend in den Emissionen wiederspiegeln. Auch in den Versionen 2.1 von 2004 und 3.2 von 2010 sind diese Modelle enthalten und wurden in der aktuellen Version 3.2 noch mit den Einflüssen feiner auswählbarer Verkehrssituationen erweitert [22].

Abbildung 19: Basis-Modell der NO_x-Emission als Funktion der Geschwindigkeit bei unterschiedlichen Emissionsklassen [22]

Die Datenbank enthält Realemissionsdaten von mittlerweile > 1000 Fahrzeugtypen beginnend mit dem Jahr 1999. In dieser Emissionsbetrachtung wird sofort deutlich, dass auch z.B. die 2000 eingeführten EURO3-Fahrzeuge in den Realfahrzyklen deutlich höhere NO_x-Emissionen emittieren, als der Typisierungs-Grenzwert von 500mg/km.

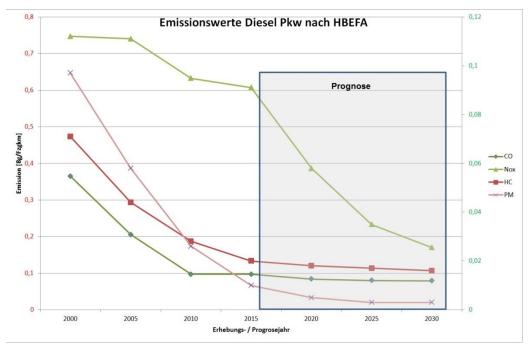


Abbildung 20: Historie und Prognose unterschiedlicher Emissionswerte [23]

Die Prognose zeigt in Abbildung 20 eine weitere sehr deutliche Reduzierung der NO_x Emissionen in der Zukunft.

1.4 Bewertung der NO_x-Emissionsentwicklung von Nutzfahrzeugen

Die Gesetzgebung für Nutzfahrzeuge unterscheidet sich signifikant von der Gesetzgebung von Personenfahrzeugen. Eine Emissionssicherstellung fast im gesamten Kennfeldbereich ist vonnöten. Unabhängige Messungen zeigen den Fortschritt, der vor allem mit EURO6 Fahrzeugen erzielt wurde. Die technologischen Herausforderungen sind prinzipiell ähnlich wie beim Personenfahrzeuge, jedoch durch veränderte Randbedingungen nicht immer übertragbar.

Im Nutzkraftfahrzeug-Sektor konnten wegen einfacherer Platzverhältnisse PEMS Messungen schon früher durchgeführt werden. Die Durchführung derartiger Messungen war schon Thema der EU Regulierung EC 715/2007 "The use of portable emission measurement systems and introduction of 'not-to-exceed' regulatory concepts should also be considered."

Abbildung 21: PEMS Messungen an Lastkraftfahrzeugen unterschiedlicher Emissionsklassen zeigen Reduktion der Emissionen eines Linienbusses (3) [25]

Die Ausführungen zeigen die niedrigen EURO6 Stickoxidemissionen eines Stadtbusses (3) auf dem Niveau eines typischen EURO6 PKWs. Moderne EURO6 LKW emittieren im betriebswarmen Zustand weniger als 20ppm Stickoxidemissionen. Eine Reduzierung um den Faktor 100 im Vergleich zu frühen Fahrzeugen der 1990er Jahre konnte erreicht werden. Eine technologische Herausforderung verbleibt weiterhin die Vermeidung der SCR-Auskühlung, jedoch bewegt sich die NO_x-Emission insgesamt auf einem signifikant niedrigeren Niveau.

1.5 Bewertung der Immissionssituation

In der BRD sind 514 Messstationen nach Angaben des UBA installiert, die die NO₂ Immissionsbelastung messen.

Von diesen 514 Messstationen liegt circa die Hälfte in Wohngebieten (ländlich und städtisch). Alle NO₂ Messungen liegen unterhalb des Grenzwertes!

20 Umweltmessstationen liegen in Industrienähe. Auch diese zeigen keine NO₂-Auffälligkeit.

Die zweite Hälfte der Messstationen liegt unmittelbar verkehrsnah an Straßen. Nur noch bei diesen Messungen direkt in Straßennähe werden Grenzwertüberschreitungen detektiert. Hier verzeichnet ca. die Hälfte der Messstationen (im Jahr 2015: 141, Quelle UBA) eine Grenzwertüberschreitung (Jahresmittelwert $> 40 \mu g/m^3$).

Zunächst ist jedoch die Entwicklung über die letzten Jahre entscheidend. Auch wenn an hochbelasteten Stellen eine Grenzwertüberschreitung erfolgt, so ist deutschlandweit eine klare Verbesserung der Immissionsbelastung ersichtlich, vor allem auch in den Ballungszentren (Abbildung 22, Abbildung 24, Abbildung 25).

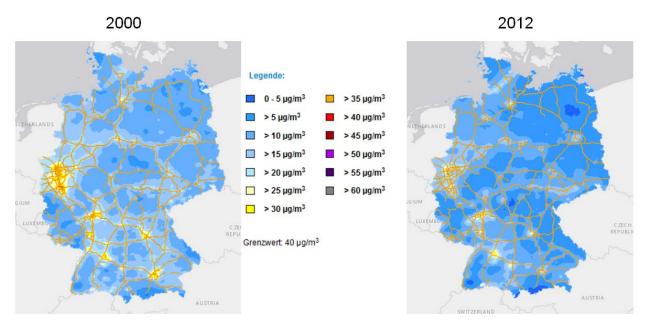


Abbildung 22: Verbesserung der NO₂ Immissionsbelastung von 2000 bis 2012 in der BRD Quelle Daten: Umweltbundesamt [26]

Die Messstation mit der bundesweit höchsten Konzentration liegt in Stuttgart am Neckartor. Auf diese Messstation konzentriere ich mich bei meinen weiteren Ausführungen, da sie als "worst-case" Fall sehr gut geeignet ist.

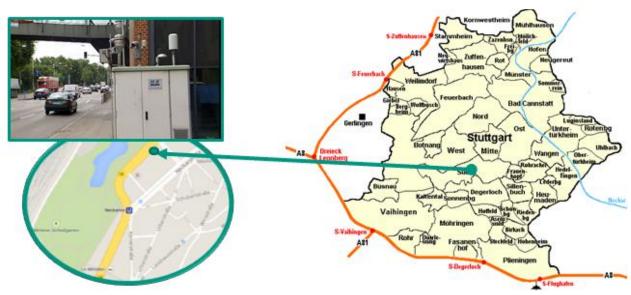
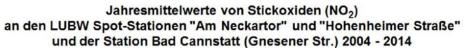
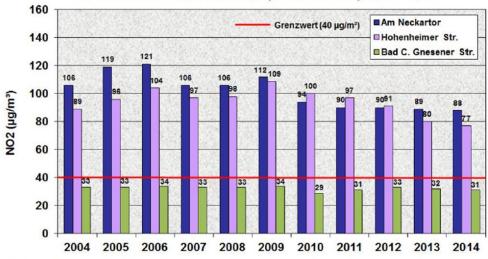
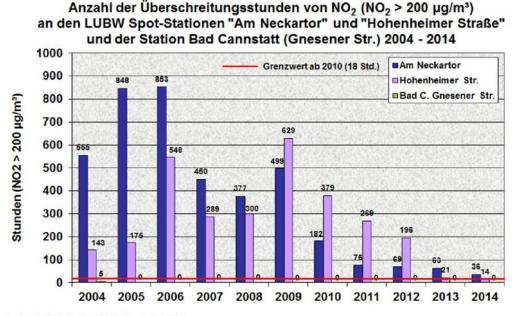




Abbildung 23: Lage der Messstation Stuttgart am Neckartor [27]

Die Umweltmessstation Stuttgart am Neckartor misst im Jahr 2014 einen Jahresschnitt von $88\mu g/m^3$. Dies ist der höchste in Deutschland gemessene Jahresdurchschnitt einer Messstation. Die erhöhten Stickoxidemissionen rühren von 70.000 Fahrzeugen inklusive 2000 schweren Nutzfahrzeugen.



Quelle: LUBW, Grafik: AfU Stuttgart, Abt. 36-4

Abbildung 24: NO₂-Jahresmittelwertentwicklung in Stuttgart an 3 Messstationen [28]

Dieser Jahresdurchschnitt von $88\mu g/m^3$ ist natürlich zügig auf $40\mu g/m^3$ zu reduzieren. Gleichwohl ist eindrücklich, dass im ebenfalls nahe gelegenen verkehrsreichen Gebiet Bad Cannstatt kontinuierlich Werte um ca. $30\mu g/m^3$ erreicht werden. Wichtig ist die Tatsache, dass von 2006 bis heute eine Reduzierung des Jahresmittelwertes am Neckartor um fast 30% erreicht werden konnte. Ebenfalls wichtig ist die Tatsache, dass die NO₂-Jahresspitzenbelastung bereits deutlich reduziert wurde. Im Jahr 2015 haben in der BRD nur noch 4 Umweltmessstationen mehr als die erlaubten 18h mit einer NO₂-Immissionsbelastung oberhalb 200 $\mu g/m^3$ aufgewiesen.

Bereits die bisherige Abnahme ist vor allem auf verschiedene Emissionsverbesserungen der PKW zurückzuführen.

Quelle: LUBW, Grafik: AfU Stuttgart, Abt. 36-4

Abbildung 25: Anzahl an Überschreitungsstunden NO₂>200μg/m³ in Stuttgart an 3 Messstationen, Anstieg in 2015 auf 61 durch meteorologische Effekte [28]

An dieser Stelle sei auf einen weiteren sehr wichtigen Effekt verwiesen, der Sensitivität der NO₂-Messung vom Messort. Die Lage der Messstation am Neckartor ist derart gewählt, dass die lokal höchste Emission erfasst wird (worst-case Prinzip). Dies zeigen Messungen der LUBW (Abbildung 26).

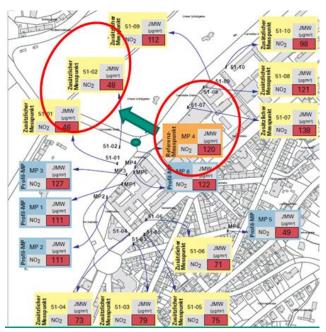


Abbildung 26: Sensitivität der NO₂-Messung vom Messort [29]

Bereits auf der gegenüberliegenden Straßenseite in Richtung Schloßpark wird am Messtag (hinter einer Lärmschutzmauer und Gewächs) anstelle der Konzentration von $120\mu g/m^3$ ein Wert von $46\mu g/m^3$ gemessen. Übrigens wurden in Stuttgart im letzten Jahr noch weitere Messungen entlang der vielbefahrenen B14 durchgeführt. Jedoch ist das Neckartor weiterhin die Messstation mit dem höchsten NO_2 -Wert.

Die erhöhten Konzentrationen, unmittelbar an der Straße am Neckartor sind lokale Höchstkonzentrationen und nicht auf anliegende Wohnviertel zu übertragen. Dies zeigen auch andere Publikationen.

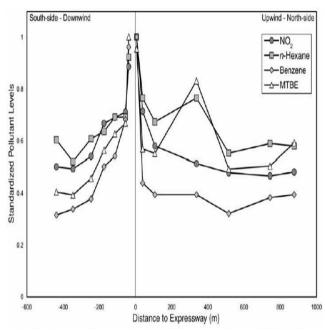


Abbildung 27: Sensitivität der NO₂-Messung von der Entfernung zum Messort "Straße" [30]

Verschiedene Extrapolationsrechnungen zeigen nun eine erreichbare Halbierung der verkehrsbedingten NO_x Emissionen, die bereits bis 2020 erzielt werden kann (Abbildung 28). Diese Rechnungen berücksichtigen jedoch noch nicht das deutlich verbesserte Realemissionsverhalten von EURO6d-Temp Fahrzeugen. Dieses liegt bei dem typischen Verkehr am Neckartor signifikant unterhalb von 80mg/km. Dies wird zu einer weiteren Reduzierung der NO₂-Immission führen.

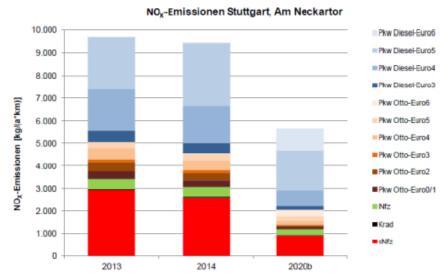


Abbildung 28: Entwicklung der NO_x-Emissionen am Neckartor [31] Quelle: LUBW

Hochrechnungen zeigen zwar, dass der Grenzwert unmittelbar an der Messstation auch mit dieser Verbesserung nicht erreicht wird, jedoch ist Folgendes zusätzlich zu erwähnen. Wie bereits erwähnt sind die HBEFA Faktoren, welche Basis für diese Analysen sind, für alle Fahrzeugtypen (NFZ, PKW Diesel, PKW Otto) für EURO6d-Temp zu hoch angesetzt. Der technologische Fortschritt kann bei diesen Analysen also noch nicht abgebildet sein. Dies wird zu einer schnelleren Reduzierung der NO₂-Immission führen. Sehr zeitnah werden also die lokal verkehrsbedingten Emissionen nicht mehr die Hauptursache für

die NO₂-Immission sein. Die Hintergrundbelastung (Industrie, Feuerungsanlagen, ...) wird an Bedeutung gewinnen und der Beitrag des Verbrennungsmotors und hier des Dieselmotors wird kontinuierlich weiter reduziert werden. Es wird in Zukunft sehr auf die Differenzierung zwischen Hintergrundbelastung und lokaler Belastung zu achten sein.

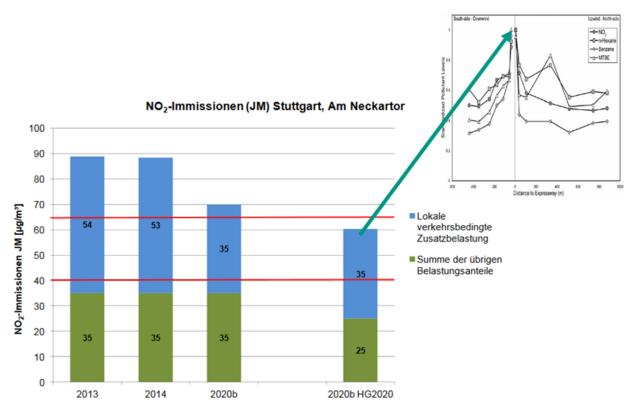


Abbildung 29: Entwicklung der NO₂-Immission am Neckartor [31]

Die Entwicklung in Abbildung 29 berücksichtigt übrigens keine Einfahrbeschränkungen für EURO3 bis EURO5 Fahrzeuge. Eine blaue Plakette würde nach Berechnungen mit zusätzlichen Optimierungsmaßnahmen eine weitere Reduzierung der NO_2 Immission auf $40\mu g/m^3$, wohlgemerkt unmittelbar an der Straße an der höchstbelasteten Stelle, ermöglichen. An dieser Stelle sei der Vollständigkeit halber auf den MAK (maximale Arbeitsplatzkonzentration) Wert verwiesen. Dieser beträgt in der BRD $1000\mu g/m^3$ und in der Schweiz $6000\mu g/m^3$. Auch wenn schwangere Frauen und Kinder nicht direkt vom MAK Wert betroffen sind, verdeutlicht dieser Vergleich die Relation.

Bereits in wenigen Jahren werden wir auch an der ungünstigsten Stelle in der BRD einen NO₂ Wert in unmittelbarer Reichweite des Immissionsgrenzwertes von 40 µg/m³ erreichen! Optimistische Annahmen zeigen, dass wir unter Umständen sogar diesen Grenzwert einhalten können. Eine deutliche weitere Verbesserung zeichnet sich also ab. Hauptursache ist der Entfall alter Fahrzeuge und die neue EURO6 Technologie. Vor diesem Hintergrund ist die Aussage der Präsidentin des UBA verwunderlich und indiskutabel "Bis 2030 wird sich die Luftqualität in unseren Städten nicht wesentlich verbessern, wie erste Modellrechnungen auf Basis der neuen geplanten EU-Abgas-Grenzwerte zeigen."

Interessant ist übrigens, dass in anderen europäischen Ländern nicht an der ungünstigsten Stelle, sondern freistehend gemessen wird. Aus diesem Grund liefern fast alle Messstationen bereits 2010 Immissionswerte im Zielbereich des Grenzwertes von $40\mu g/m^3$.

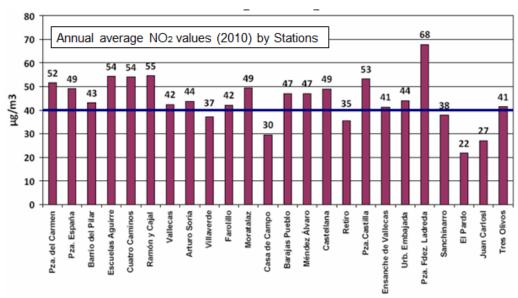


Abbildung 30: Entwicklung der NO₂-Immission in Madrid [32]

Auch in Madrid zeichnet sich über die Jahre übrigens eine kontinuierlich besser werdende NO₂-Immission aufgrund verbesserter Flottenemissionen ab.

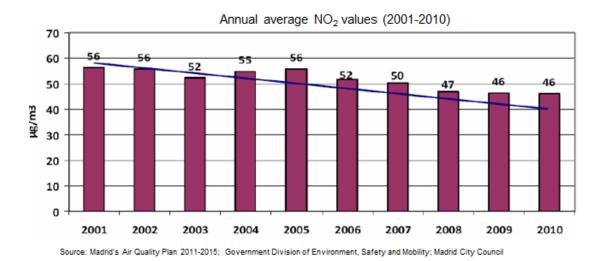


Abbildung 31: Entwicklung der NO₂-Immission in Madrid [32]

2. Fragen des Untersuchungsausschusses, Schreiben vom 19.07.2016

Der Bundestag wolle beschließen, den Antrag auf Drucksache 18/8273 mit folgender Maßgabe, im Übrigen unverändert anzunehmen:

Abschnitt B. wird wie folgt gefasst:

"1. Der Untersuchungsausschuss soll für den Zeitraum seit dem 20. Juni 2007 - unter Einbeziehung von durch den gemäß Beschluss (EU) 2016/34 vom 17. Dezember 2015 vom Europäischen Parlament eingesetzten Untersuchungsausschuss gegebenenfalls gewonnenen Erkenntnissen - Hintergründe und Umstände zum Auseinanderfallen der von den Kraftfahrzeugherstellern angegebenen, bzw. bei der Typengenehmigung ermittelten, Kraftstoffverbräuche und Auspuffemissionen von Kraftfahrzeugen (Kfz) und den tatsächlichen, im Realbetrieb auftretenden Kraftstoffverbräuche (Realbetriebsverbräuche) und der tatsächlichen, im Realbetrieb auftretenden Auspuffemissionen (Realbetriebsemissionen) und zur Verwendung von Abschalteinrichtungen oder sonstigen technischen, elektronischen oder sonstigen Vorrichtungen zur Einflussnahme auf das Emissionsverhalten der Fahrzeuge aufklären:

1. Gab es im Untersuchungszeitraum Anhaltspunkte für oder Hinweise an die Bundesregierung, dass die Angaben von Kfz-Herstellern zum Kraftstoffverbrauch und zu Auspuffemissionen nicht mit dem Realbetriebsverbrauch und den Realbetriebsemissionen der Kfz übereinstimmen, und gab es Hinweise auf Ursachen dafür?

Antwort:

Der NEDC Fahrzyklus war, wie im Kapitel 1.2 dargestellt, nicht als Zyklus zur Erfassung des Realverbrauches gedacht, nur zum Vergleich der Fahrzeuge. Im Rahmen der am 04.06.2008 gestarteten Verhandlungen zu einem weltweit harmonisierten Testzyklus WLTP ist im 3. Teilprotokoll festgehalten, dass sogenannte real driving patterns berücksichtigt werden sollten, um einen realistischeren Realverbrauch zu erzielen!

Platz Modell	Motorisierung	Normverbrauch (Liter/100km) ¹	spritmonitor.de (Liter/100km) ²	Mehrverbrauch ³
1 VW Golf	1.6 TDI, 110 PS (Schaltgetriebe)	3,2-3,9	5,33 (n=36)	50,1%
2 VW Passat	2.0 TDI, 140 PS ⁴ (Schaltgetriebe)	4,6	6,06 (n=18)	31,7%
3 VW Polo	1.2 TSI, 90 PS (Schaltgetriebe)	4,7	6,11 (n=26)	30,0%
4 Audi A3	1.4 TFSI cod ultra, 150 PS (Schaltgetriebe)	4,7	7,31 (n=10)	55,5%
5 VW Tiguan	2.0 TDI, 110 PS (Schaltgetriebe)	5,3	6,49 (n=11)	22,5%
6 Mercedes C-Klasse	C220 BlueTec, 170 PS (Automatikgetriebe)	4,3-4,7	6,34 (n=19)	40,9%
7 BMW 3er	320d, 184 PS (Automatikgetriebe)	4,4-5,1	6,64 (n=31)	39,8%
8 Opel Corsa	1.4, 87 PS ⁵ (Schaltgetriebe)	5,7	7,56 (n=13)	32,6%
9 Skoda Octavia	1.8 TSI Green tec, 180 PS (Schaltgetriebe)	6,1	7,82 (n=11)	28,4%
10 BMW 1er	116i, 136 PS (Schaltgetriebe)	5,4-5,6	7,47 (n=26)	35,8%
		Donah a alau itti alaa Alau si alau sa		200/

Durchschnittliche Abweichung:

Abbildung 32: Einfluss des individuellen Fahrprofils auf den Realverbrauch [33]

Abbildung 33 zeigt die Schwierigkeit bei der Verbrauchsbestimmmung anhand der Spannweite meines persönlichen Fahrzeugverbrauches (Baujahr 2010, NEFZ-Angabe 6,0 – 6,5 l/100km). In dieser Bandbreite kann sich prinzipiell der Verbrauch bewegen. Bei Fahrzeugstillstand und Motorbetrieb (z.B. Heizbetrieb, elektrischer Verbrauch bedingt Motorbetrieb) ist der Verbrauch unendlich!

Maximalverbrauch, Stadtverkehr/Stau 13,3 l/100km

Minimalverbrauch, Überland/Autobahn 4,2 l/100km

Abbildung 33: Spannweite des Fahrzeugverbrauches bei einer Normangabe von 6,0-6,5 l/100km. Die Verbrauchsspannweite ist bedingt durch Individualisierungsmöglichkeiten der Fahrzeuge (Reifen, Fahrwerk, Ausstattungsumfänge, ...)

Gründe für Abweichungen vom Normverbrauch sind vielschichtig und beispielsweise vom ICCT publiziert. In der Regel ist der Realverbrauch höher als die NEFZ Angabe.

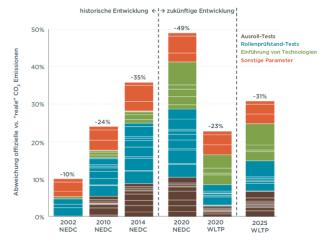


Abbildung 34: Spannweite des Fahrzeugverbrauches bei einer Normangabe von 6,0-6,5 l/100km [34]

Einen Einfluß haben hierbei die viel diskutierten Ausrolltests. Natürlich wird bei der Bestimmung der Ausrollkurfen die Grenze des Erlaubten – die Ausrollkurve wird von den Herstellern bestimmt – ausgereizt. Reifenluftdruckanhebung, Aerodynamikoptimierungen und weitere Maßnahmen kommen zum Einsatz.

Die gefühlte Zunahme der Abweichung ist jedoch in erster Linie ein mathematischer Effekt, wie anhand von Abbildung 35 gezeigt werden kann.

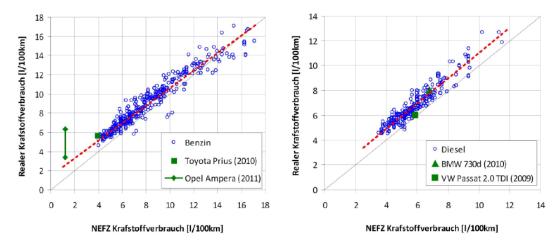


Abbildung 35: Vergleich der Real- und NEDC-Verbräuche [35]

Die Abweichung zwischen realem und NEFZ Kraftstoffverbrauch ist in etwa konstant (vor allem bei Dieselfahrzeugen) über die gesamte Flotte und beträgt im Mittel ungefähr 1 l/100km.

In einer anderen Darstellung des ADAC beträgt die Verbrauchsdifferenz (Real zu NEFZ) etwas weniger (Abbildung 36). Die Realverbrauchsdifferenz nimmt leicht von 0,5 auf 0,8 l/100km von 2005 bis 2015 zu. Im Wesentlichen ist dies auf Maßnahmen zurückzuführen, die im NEFZ eine bessere Verbrauchsreduzierung erzielen als in der Realität (z.B. Downsizing, Kennfeldoptimierung in der Teillast ...).

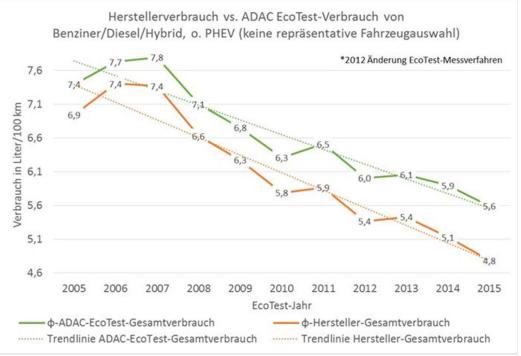


Abbildung 36: Entwicklung von Zertifizierungs- und Realverbrauch [36]

Bei einem Verbrauchsniveau von 10 l/100km entspricht ein realer Mehrverbrauch von einem Liter auf 100 km (1 l/100km) exakt 10%. Bei einem Verbrauchsniveau von 4 l/100km entspricht diese gleiche Differenz einem Mehrverbrauch von 25% bei gleichbleibender absoluter Differenz!

Es ist prinzipiell gefährlich, eine prozentuale Angabe bei kleinen Zielwerten als Maßstab zu nehmen. Dier irreführende Trend ist zwischenzeitlich häufiger zu beobachten. Absolute Zahlen sind aussagekräftig! Ein moderater absoluter Mehrverbrauch ist nun zu beobachten. Einen Anteil hieran haben die Fahrzeugherstellermaßnahmen bei der Zertifizierung. Trotz allem ist das Verbrauchsverhalten und das Mehrverbrauchsverhalten physikalisch plausibel und nicht mit Abschaltvorrichtungen begründet.

2. Was hat die Bundesregierung mit welchem Ergebnis aufgrund von eventuellen zu 1. bezeichneten Anhaltspunkten oder Hinweisen im Untersuchungszeitraum veranlasst?

Antwort:

Dies kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.

3. Welche Auswirkungen auf Leben und Gesundheit der Bevölkerung, auf die Umwelt, das Klima, auf den Schutz der Verbraucher und auf die Kfz-Steuereinnahmen infolge von Abweichungen zwischen Kfz-Herstellerangaben zu Stickoxid-Emissionen (Stickoxid: NO_x) und sonstigen Emissionen von Dieselfahrzeugen und den Stickoxid-(NO_x)-Realbetriebsemissionen und sonstigen Realbetriebsemissionen von Dieselfahrzeugen waren bekannt, und was hat die Bundesregierung insoweit veranlasst und gegebenenfalls zur Abhilfe unternommen?

Antwort:

Das Thema der NO_x-Entwicklung wurde in den früheren EEA-Reports (EU emission inventory report 1990-2010) nicht als Problem gesehen, sondern im Bereich der Zielerreichung, die Deutschland auch hinter Luxemburg als zweitbestes Land bezogen auf die Götheburg-Ziele fortgesetzt hat, trotz zwischenzeitlicher Erhöhung des

Dieselanteils der Fahrzeugflotte.

EU progress in meeting emission ceilings set out in the NECD Annexes I and II

EU progress in meeting emission ceilings (for compliance and for environmental objectives) of the four main air pollutants regulated in the 2001 National Emission

Ceilings Directive

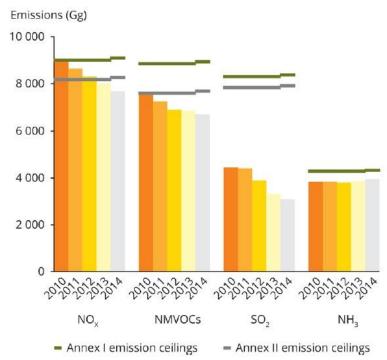


Abbildung 37: Zielerreichungsgrad der Göteborg-Ziele [37]

Übrigens beinhaltet der 2014er Bericht "Transport for Health – the global burden of disease from motorized road transport" keinen Hinweis auf einen NO₂ Beitrag [38].

Verschiedene epidemiologische Studien der 2000er Jahr können zudem keinen signifikanten Einfluß der NO₂ Konzentration auf die Gesundheit feststellen. Geringe Abhängigkeiten gehen mit sehr großen Toleranzbereichen der Betrachtungen einher. Statistische Aussage sind oftmals nicht belastbar.

Mit der WHO Studie von 2013 wurde erstmals konkret eine Zahl (100.000YLL) für die BRD genannt.

Im Rahmen der Diskussion "Schutz von Leib und Leben" ist zu erwähnen, dass die angebotenen Dieselfahrzeuge, was Betriebssicherheit oder gar fatalale Fahrzeugschäden durch unkontrollierten Abbrand betrifft, robust im Feld unterwegs waren.

Der zweite Teil der Frage kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.

4. Lagen der Bundesregierung (insbesondere den für Verkehr, Wirtschaft, Umwelt und

Justiz zuständigen Bundesministerien sowie dem Bundeskanzleramt) oder damit befassten Bundesbehörden (insbesondere dem KBA, der BASt und dem UBA) im Untersuchungszeitraum Hinweise oder Kenntnisse bezüglich strafbarer oder möglicherweise sonst unzulässiger Handlungen [Prüfvorgänge, Vorermittlungen, Ermittlungen der Strafverfolgungsbehörden, interne Ermittlungen in den bestimmten Unternehmen (Kfz-Hersteller und ihre Zulieferer), auf die sich die Hinweise oder (möglichen) Kenntnisse beziehen] jeweils welchen Inhalts in Bezug auf

- a) angebliche technische Manipulationen mit Wirkung auf die Messung geringerer als tatsächlicher Auspuffemissionen und von geringerem als dem tatsächlichen (Realbetriebs) Kraftstoffverbrauch von Kfz und
- b) Abweichungen zwischen Kfz-Herstellerangaben zu Kraftstoffverbrauch und Emissionen und tatsächlichem Kraftstoffverbrauch und tatsächlichen Emissionen von PKW vor, und welche Kenntnisse hätten die Bundesregierung und/oder damit befasste Bundesbehörden diesbezüglich haben können?

Antwort:

Dies kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.

5. Welche Kontakte mit und gegebenenfalls welche Einflussnahmen von Kfz-Herstellern und ihren Verbänden gab es auf die Implementierung und Weiterentwicklung der Verordnung- VO- (EG) Nr. 715/2007 vom 20. Juni 2007 und der Richtlinie-RL-2007/46/EG vom 5. September 2007, auf die Kontrolle der Einhaltung dieser Vorschriften durch die Bundesregierung, gegenüber der Bundesregierung und Prüfinstitutionen im Hinblick auf die Feststellung/Messung des Kraftstoffverbrauchs und der Emissionen von Kfz?

Antwort:

Dies kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.

- II. Der Ausschuss soll dabei im Einzelnen insbesondere klären:
- 1. Wie wurden die Vorschriften der Europäischen Union betreffend die Typengenehmigung von Kraftfahrzeugen, insbesondere die in B. I. 5. Genannten Vorschriften, in Bezug auf die Feststellung und Messung von Kraftstoffverbrauch und Emissionen sowie den Zugang zu für Prüfzwecke erforderlichen

Informationen implementiert, überwacht und durchgesetzt?

- a) Wurden die Vorgaben zur Schaffung von Sanktionen (Artikel 13 der VO(EG) Nr. 715/2007 und Artikel 46 der RL 2007/46/EG)- und wenn ja wann und auf welche Weise- in deutsches Recht umgesetzt?
- b) Welche konkreten Aufgaben und Funktionen nahmen welche Stellen (zum Beispiel staatliche Stellen oder beauftrage Dritte, insbesondere das Kraftfahrt-Bundesamt (KBA) und die technischen Prüfdienste) bei der Typengenehmigung, bei Konformitätsprüfungen oder sonstigen Nachkontrollen und vergleichbaren Überprüfungen von Abgaswerten von Dieselfahrzeugen wahr, was wurde von wem geprüft, wie wurden Prüfungen durchgeführt und durch welche Stellen erfolgten Weisungen an die technischen Prüfdienste oder das KBA sowie deren Kontrolle und die Kontrollen der Prüfungsergebnisse?

- c) Lagen den zuständigen Behörden bzw. Prüfdiensten alle für die Durchführung der Prüfungen erforderlichen Informationen vor, hatten sie beispielsweise tatsächliche Überprüfungsmöglichkeiten der Motorsteuerung und damit die tatsächliche Möglichkeit, Programme zur Zykluserkennung zu erkennen und zu überprüfen, und sind sämtliche technischen, elektronischen oder sonstigen Vorrichtungen zur Einflussnahme auf das Emissionsverhalten der Fahrzeuge bei diesen Prüfungen erfasst worden? Wie wurde das Verbot von Abschalteinrichtungen und sonstigen technischen, elektronischen oder sonstigen Vorrichtungen zur Einflussnahme auf das Emissionsverhalten der Fahrzeuge implementiert, überwacht und durchgesetzt, welche erforderlichen Maßnahmen wurden getroffen?
- d) Bestanden irgendwelche, insbesondere rechtlichen, technischen, finanziellen oder personellen Hindernisse, die dazu geführt haben, dass eine Feststellung von Abschalteinrichtungen oder sonstigen technischen, elektronischen oder sonstigen Vorrichtungen zur Einflussnahme auf das Emissionsverhalten der Fahrzeuge bei der Typengenehmigung oder der Abgasnachprüfung durch die zuständigen Stellen nicht erfolgte?
 Waren eventuelle Hindernisse den zuständigen staatlichen Stellen bekannt, und wenn ja, seit wann, und welche Maßnahmen wurden gegebenenfalls von den verantwortlichen staatlichen Stellen nach einem Bekanntwerden von Hindernissen ergriffen?
- *e)* Welche Position **hat die Bundesregierung** auf EU-Ebene zur Weiterentwicklung und Anpassung des europäischen Rechts bezüglich der Kfz-Emissionen aus welchen Gründen und gegebenenfalls unter welcher Einflussnahme **vertreten**?

Antwort:

Diese Unterfragen können aufgrund nicht vorliegender Informationen nicht beantwortet werden.

- 2. Welche Erkenntnisse zu den in B. I. genannten Hintergründen und Umständen (insbesondere zum Auseinanderfallen der von den Kraftfahrzeugherstellern angegebenen, bzw. bei der Typengenehmigung ermittelten, Kraftstoffverbräuche und Auspuffemissionen und den Realbetriebsverbräuchen und Realbetriebsemissionen und der Verwendung von Abschalteinrichtungen oder sonstigen technischen, elektronischen oder sonstigen Vorrichtungen zur Einflussnahme auf das Emissionsverhalten der Fahrzeuge) lagen der Bundesregierung (insbesondere den für Verkehr, Wirtschaft und Umwelt zuständigen Bundesministerien sowie dem Bundeskanzleramt) oder damit befassten Bundesbehörden (insbesondere dem KBA, der BASt und dem UBA) wann vor, und welche Konsequenzen wurden daraus gezogen?
 - a) Welche Vorkehrungen oder Maßnahmen **haben Stellen des Bundes ergriffen** oder veranlasst, um gegebenenfalls das Ausmaß festzustellen und dies zu unterbinden? Inwieweit, bis wann, weshalb und durch welche Einflussnahmen unterblieb

dies gegebenenfalls?

- b) Mit welchen Akteuren und Personen, insbesondere Prüforganisationen, Verbänden, aus
 Wissenschaft sowie Fahrzeugherstellern und deren Zulieferern, tauschten die
 Bundesregierung (insbesondere die für Verkehr, Wirtschaft und Umwelt zuständigen Bundesministerien sowie das Bundeskanzleramt) oder damit befasste Bundesbehörden (insbesondere das KBA, die BASt und das UBA) seit wann regelmäßig oder vereinzelt Informationen aus, oder führten sie Gespräche zu dem Thema der erhöhten Abgaswerte im realen Betrieb gegenüber den bei der Typengenehmigung ermittelten Abgaswerten von Dieselfahrzeugen?
- c) Lagen der Bundesregierung (insbesondere den für Verkehr, Umwelt und Wirtschaft zuständigen Bundesministerien sowie dem Bundeskanzleramt) oder damit befassten Bundesbehörden insbesondere dem KBA, der BASt und dem UBA) Informationen, eigene Erkenntnisse darüber oder Hinweise Dritter vor (auch von Fahrzeugherstellern oder anderen, an der Entwicklung von Fahrzeugen beteiligten Firmen, Prüfdiensten, Verbänden, der Wissenschaft oder anderen Institutionen), dass technische, elektronische oder sonstige Vorrichtungen zur Einflussnahme auf die Schadstoffreinigung in Dieselfahrzeugen (insbesondere zur Verwendung von Abschalteinrichtungen oder Programmen zur Fahrzykluserkennung) verbaut sein könnten?
- d) Welche Möglichkeit bestand für die technischen Prüfdienste, das KBA, sonstige öffentliche Stellen oder beauftragte Dritte, Einblicke in die Motorsteuerung und die dort installierte Software der Fahrzeuge zu erhalten, und wie wurde eine solche Möglichkeit gegebenenfalls genutzt, und welche Maßnahmen haben die vorgenannten Stellen aufgrund gewonnener Erkenntnisse ergriffen? Aus welchem Grund und aufgrund welcher Einflussnahme oder Entscheidung wurden geeignete Maßnahmen gegebenenfalls nicht ergriffen?
- e) Welche Vorkehrungen oder Maßnahmen haben **Stellen des Bundes** ergriffen oder veranlasst, um gegebenenfalls das Ausmaß der herstellerseitigen Verwendung von Vorrichtungen zur Einflussnahme auf die Schadstoffreinigung festzustellen und die Verwendung dieser Vorrichtungen zu unterbinden? Inwieweit, bis wann, weshalb und durch welche Einflussnahmen unterblieb dies gegebenenfalls?

f) Welche Informationen lagen der Bundesregierung (insbesondere den für Verkehr, Wirtschaft, Umwelt und Auswärtiges zuständigen Bundesministerien sowie dem Bundeskanzleramt) oder damit befassten Bundesbehörden (insbesondere dem KBA, der BASt und dem UBA) seit wann vor, die auf gesundheitliche Beeinträchtigungen und Gefahren für die Umwelt durch verkehrsbedingte NOx-Emissionen sowie die Überschreitung von NOx-Grenzwerten hinwiesen, und welche Maßnahmen wurden hinsichtlich der Typengenehmigung oder der Nachkontrollen von Diesel-PKW ergriffen?

Antwort:

Es war allen Personen mit technischem Sachverstand klar, dass die Fahrzeuge unmöglich mit der verfügbaren EURO4 und EURO5 Dieseltechnologie im gesamten Kennfeld die Stickoxidemissionen einhalten konnten. Auf diese Schwierigkeit bin ich im obenstehenden Kapitel 1.3 eingegangen.

Die Grenze zwischen NEFZ-Emissionstesterfüllung (Entwicklungsziel) und unmöglich zu realisierender Emissionserfüllung (beispielsweise im Hochlastbetrieb) ist nicht definiert.

Diese Grauzone führte für alle Beteiligten zur Gewissheit, dass es eine Grenze der Nichterfüllung geben muss. Dass diese Grenze förmlich mit dem Skalpell und in der letzten Konsequenz - und auch in Teilen sehr kritikwürdig bis inakzeptabel (bei Verwendung defeat device) – ausgeführt wurde, ist nachvollziehbar.

Wie grenzwertig manche Auslegungen appliziert waren, ist sicherlich zu vermuten gewesen.

- 3. Welche Konsequenzen hat die Bundesregierung aus dem Bekanntwerden der Überschreitung von Abgasgrenzwerten eines deutschen Herstellers in den USA und aus den Untersuchungsergebnissen des International Council on Clean Transportation (ICCT) gezogen, welche Verantwortlichkeiten bestanden hierbei, und welchen konkreten Untersuchungsauftrag erteilte die Bundesregierung für die "Untersuchungskommission Volkswagen , und welche konkreten Erkenntnisse hat diese gewonnen und welche Konsequenzen daraus gezogen? Hierzu soll der Ausschuss im Einzelnen klären:
 - a) Wann, in welcher Weise, durch wen und wie haben die Bundesregierung (insbesondere die für Verkehr, Wirtschaft, Umwelt und Auswärtiges zuständigen Bundesministerien sowie das Bundeskanzleramt) oder damit befasste Bundesbehörden (insbesondere das KBA, die BASt und das UBA) Kenntnis von den Vorwürfen des California Air Resources Board(CARB) und der United States Environmental Protection Agency (EPA) erhalten, wann erfolgte ein Erkenntnisaustausch mit diesen Behörden, der Regierung der USA, anderen Staaten, der EU-Kommission sowie innerhalb der Bundesregierung, der zuständigen Bundesbehörden und nachgeordneter Stellen, und welche Maßnahmen wurden daraufhin ergriffen?
 - b) Wann hat welche Stelle nach dem Zeitpunkt des Bekanntwerdens der Abgasmanipulation eines Herstellers weitere Untersuchungen und Nachprüfungen zu Abgaswerten von bereits zugelassenen Diesel-PKW in Auftrag gegeben, durch welche konkreten Erkenntnisse und Ziele waren die jeweiligen Untersuchungsauf-

- *träge veranlasst*, was umfasste der jeweilige Auftrag, und nach welchen Kriterien erfolgte die Auswahl der überprüften Fahrzeuge?
- c) Welche Weisungen zu diesen Überprüfungen hat das Bundesministerium für Verkehr und digitale Infrastruktur (**BMVI**) dem KBA erteilt, gegebenenfalls wann sowie in welcher Form?
- d) Wurden andere Institutionen wie die **DEKRA** oder der **TÜV** mit Untersuchungen beauftragt, gab es hierzu Angebote derselben oder einen Austausch innerhalb dieser Prüfdienste oder mit der **Bundesregierung** (insbesondere den für Verkehr, Wirtschaft und Umwelt zuständigen Bundesministerien sowie dem Bundeskanzleramt) oder damit befassten **Bundesbehörden** (insbesondere dem KBA, der BASt und dem UBA)?
- e) Wann und welchen Stellen (z. B. technischen Prüfdiensten, dem KBA, der "Untersuchungskommission Volkswagen") gegenüber wurden die Erkenntnisse über die Motorsoftware von PKW-Herstellern, bei denen sich Abweichungen der im realen Fährbetrieb auftretenden Stickoxidwerte von den nach dem Neuen Europäischen Fahrzyklus (NEFZ) ermittelten Stickoxid-Laborprüfwerten ergeben haben, offengelegt, bzw. von welcher Stelle wurden Informationen hierzu angefordert, wurden hieraus weitere Erkenntnisse gewonnen, und wann wurden welche Maßnahmen hieraufhin von welcher (oben genannten) Stelle eingeleitet?
- f) Durch welche Maßnahmen und Initiativen hat die Bundesregierung seit Bekanntwerden der Abgasmanipulation eines deutschen Herstellers im September 2015 an der Aufklärung dieser Manipulationen mitgewirkt sowie die Öffentlichkeit und den Deutschen Bundestag frühzeitig und umfassend informiert?
- g) Inwieweit wurden die Halter von manipulierten Fahrzeugen von der Bundesregierung bei der Durchsetzung ihrer Interessen unterstützt, und inwiefern setzte sich die Bundesregierung für eine Gleichbehandlung der betroffenen Fahrzeughalter in Deutschland analog zu den Fahrzeughaltern in den USA ein? Dies kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.
- h) Inwieweit hat **die Bundesregierung** eventuelle Verstöße gegen europäisches und deutsches Recht bei der Typengenehmigung, die sich durch erhöhte Emissionen, insbesondere von NOx, im realen Betrieb äußern, festgestellt und seit Bekanntwerden der Manipulationen versucht abzustellen und zu sanktionieren?
- i) Was war der konkrete Untersuchungsauftrag der "Untersuchungskommission Volkswagen, wer hat diesen warum so festgelegt, wie kam es zu der personellen Besetzung der Kommission, und wie erfolgte die Auswahl der zu untersuchenden Fahrzeuge?

- j) Welche Informationen wurden warum herangezogen, welcher weitere externe Sachverstand und welche Behörden, Institutionen und Verbände wurden warum eingebunden bzw. nicht eingebunden?
- k) Aus welchen Tätigkeiten bestand die Arbeit der **Untersuchungskommission**? Wer wurde mit welchen Untersuchungen (insbesondere Abgasmessungen) beauftragt und wer hat welche im Bericht der Kommission erwähnten Untersuchungen und Abgasmessungen durchgeführt?
- Was wurde konkret wie untersucht, gab es interne zeitliche Vorgaben beispielsweise für Untersuchungen, Berichte, Zwischenberichte oder den Abschluss der Untersuchungen?
- m) Welche Ergebnisse hatten die Untersuchungen und (Abgas-)Messungen, die im Rahmen der "Untersuchungskommission Volkswagen durchgeführt wurden?
- n) Wem wurden diese wann zur Kenntnis gegeben, wie haben sich Fahrzeughersteller und Zulieferer dazu gegebenenfalls geäußert, und fanden Gespräche oder Abstimmungen mit Herstellern, Zulieferern von Bauteilen und/oder dem Verband der Automobilindustrie e. V. (VDA) statt, wenn ja, mit welchem Inhalt, und welche Maßnahmen wurden daraufhin ergriffen, und welche Auswirkungen hatten diese auf Ergebnisse der Untersuchungen oder den Bericht der Untersuchungskommission?
- o) Wurden Äußerungen, Ankündigungen und/oder Zugeständnisse von Herstellern durch die "Untersuchungskommission Volkswagen" oder Teile derselben überprüft (z. B. auf Plausibilität und Wirksamkeit) und/oder bewertet, und wenn ja, wie?

 Dies kann aufgrund nicht vorliegender Informationen nicht beantwortet werden.
- p) Welche Erkenntnisse hat die Untersuchungskommission gewinnen können, welche Zwischenergebnisse und Ergebnisse hat die Untersuchungskommission?
- q) Sind die Schlussfolgerungen oder Empfehlungen der Untersuchungskommission ausreichend dafür, zukünftig erhebliche Überschreitungen von Abgasemissionen im realen Fährbetrieb gegenüber den bei der Typengenehmigung angegebenen zu verhindern?

Antwort:

Diese Unterfragen können aufgrund nicht vorliegender Informationen nicht beantwortet werden.

Es sei aber nochmals darauf hingewiesen, dass sogar EURO3 Fahrzeuge im Realbetrieb erhöhte NO_x-Emissionen aufweisen. Dies war der Fachwelt seit langem bekannt.

III. Der Untersuchungsausschuss soll schließlich klären, welche rechtlichen (nationalen/im Rahmen der Europäischen Union) und tatsächlichen Konsequenzen aus der Aufklärung des Untersuchungsgegenstandes gegebenenfalls gezogen werden sollten, insbesondere im Hinblick auf

- 1. den Schutz von Leben und Gesundheit der Bevölkerung,
- 2. den Schutz der Umwelt und auf die Erreichung der Klimaziele,
- 3. den Schutz der Verbraucher und ihre Rechtsstellung und auf die Herstellerverantwortung,
- 4. die Organisation und Strukturierung der Überprüfung der Einhaltung von Abgasgrenzwerten für Kfz.

Antwort:

Auf diese Fragen ist obenstehend so umfassend wie möglich eingegangen worden.

3. Zusätzliche Bemerkungen zur Thematik "Dieselgate"

Im Zusammenhang mit der komplexen Gesamtthematik sind in diesem Kapitel verschiedene weitere Aspekte, welche vielleicht nicht unmittelbar im Fokus des Untersuchungsausschusses liegen, die jedoch trotzdem von Wichtigkeit sein können, aufgeführt.

Schaden für die deutsche Volkswirtschaft

Der Verbau einer defeat device ist verboten. Dies muss geahndet werden. Insbesondere in den USA ist der Umweltschaden, den Volkswagen verursacht hat, jedoch marginal.

Im Jahr 1998 haben insgesamt sieben überwiegend amerikanische Nutzfahrzeughersteller bei der Emissionsstufe EPA98 durch den Einbau einer defeat device erhöhte NO_x Emissionen zu verantworten.

Die NO_x-Mehremission aller Fahrzeuge (Pick-up, Verteilerfahrzeuge, Langstrecken-LKW, Busse, Vans, ...) **lag bei 1,3 Millionen Tonnen NO_x pro Jahr** (Abbildung 36)!

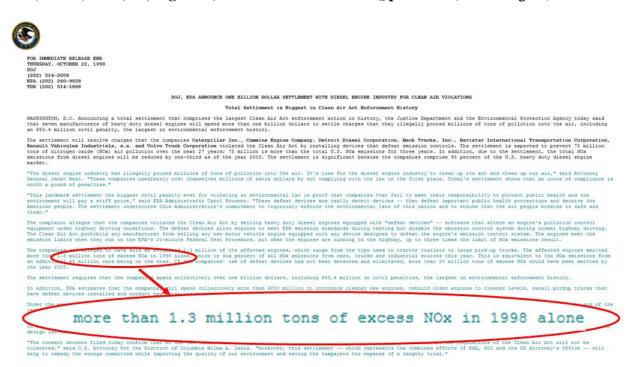


Abbildung 38: "DOJ, EPA ANNOUNCE ONE BILLION DOLLAR SETTLEMENT WITH DIESEL ENGINE INDUSTRY FOR CLEAN AIR VIOLATIONS - Total Settlement is Biggest in Clean Air Act Enforcement History " [39]

Bei einer realistischen mittleren Grenzwertüberschreitung von 600mg/km aller Volkswagenfahrzeuge in den USA ergibt sich bei insgesamt 500.000 Fahrzeugen und einer typischen mittleren Jahresfahrleistung von 20.000 km/a eine Mehremission von lediglich 6000 Tonnen NO_x pro Jahr durch Volkswagens "dieselgate".

Die Kompensationszahlungen sowie Strafen summierten sich damals auf ca. 1 Mrd \$ für alle Hersteller zusammen! Durch zivilrechtliche Sammelklagen ist das heutige Niveau aus meiner Sicht nicht mehr mit Augenmaß erklärbar.

Letztendlich gehen durch die hohen Zahlungen gegenüber Volkswagen unserem Steuersystem Milliardenzahlungen verloren. Ferner behindern diese überzogenen Strafzahlungen unsere Entwicklung und Prosperität in der Zukunft.

Es lassen sich übrigens weitere Fälle signifikanter NO_x-Mehremissionen in den USA aus der Vergangenheit finden, die teilweise unbemerkt von der Öffentlichkeit geduldet wurden oder werden.

Gesetzgebung

Die größte Herausforderung bei der zielgerichteten Entwicklung moderner Verbrennungsmotoren ist die Verfügbarkeit der benötigten Entwicklungszeit!

Circa 4 bis 5 Jahre vor Serienproduktionsstart muss das Konzept fertig definiert sein, bevor die eigentliche Serienentwicklung mit komplexen Applikations-, Produktions-, Zulieferer-, Motorerprobungs- oder Fahrzeugentwicklungsschnittstellen starten kann.

Die Gesetzgebung EURO6d-Temp, welche ab 09/2017 Gültigkeit haben wird, ist beispielsweise noch lange nicht final festgelegt. Die Pakete 3 und 4, beinhaltend zum Beispiel Kaltstart, sind noch immer weitestgehend offen und in der Diskussion!

Die Entwicklung ist in Teilen zu einem Lotteriespiel geworden, da die Randbedingungen, auf die entwickelt wird, viel zu spät definiert werden. Dies war auch in der Vergangenheit der Fall.

Öffentliche Wahrnehmung

Hochrechnungen von mir zeigen, dass der Beitrag der Dieselflotte – sollte diese ausschließlich aus den modernsten heute vorliegenden Dieselfahrzeugen (Substitution von EURO3-4-5 durch EURO6d-Temp-Besttyp) bestehen - zur NO_2 Gesamtkonzentration in Stuttgart am Neckartor (heute ca. $88\mu g/m^3$ mit einem PKW-Dieselbeitrag von ca. $26\mu g/m^3$) auf ca. $3\mu g/m^3$ reduziert ist. Die Technologieentwicklung ist eindrücklich.

Vor diesem Hintergrund ist die Berichterstattung mit teilweise retuschierten Bildern von 30 Jahre alten Ottomotoren ohne Abgasnachbehandlung exemplarisch für unsere Technikskepsis!

Neuer Abgastest

Die dreckige Wahrheit über Dieselautos

Die Abgastests für Autos gelten als realitätsfern. Ein neues Verfahren soll für ehrlichere Werte sorgen. Forscher haben 32 Dieselfahrzeuge jetzt auf diese Weise untersucht. Das Ergebnis ist für viele Hersteller blamabel. mehr... [Forum]

Abbildung 39: Typische zeitgenössische Berichterstattung [40]

4. Zusammenfassung

Insgesamt stellt sich ein vielschichtiges Bild im Zusammenhang mit der dieselmotorischen Stickoxidemissions- und Immissionssituation dar. Es sind sowohl positive als auch kritisch zu wertende Sachverhalte aufzuführen.

Positiv zu wertende Sachverhalte:

Von sämtlichen unerwünschten Emissionskomponenten des Dieselmotors ist lediglich die Stickoxidemission noch relevant. Partikel, HC, CO oder SO_x sind nicht mehr bedeutsam.

Trotz einer deutlichen Zunahme des Verkehrsvolumens konnten die Stickoxidemissionen, welche durch den Personenverkehr bedingt sind, um mehr als 50% seit 2000 und circa 70% seit 1990 reduziert werden.

Eine kontinuierliche Verbesserung von EURO3 bis EURO6 der NO_x Emissionen wurde erreicht. Leider war der Schritt von EURO4 zu EURO5 in der Realität NO_x-seitig relativ klein.

Sämtliche NO₂-Immissionsmessungen in Wohngebieten / Industrienähe in der BRD liegen unterhalb des Grenzwertes.

Seit 2006 erfolgte eine Reduzierung der NO_2 -Überschreitungsstunden (Konzentration oberhalb von $200\mu g/m^3$) von 855h auf 61h im Jahr 2015 in Stuttgart am Neckartor.

Der Jahresmittelwert verbesserte sich im gleichen Zeitraum von 121µg/m³ auf 88µg/m³.

Erste aktuelle Dieselmodelle vorerfüllen bereits EURO6d-Temp bei einer gleichzeitigen Reduzierung der CO₂-Emissionen.

Vor allem für die Emissionsstufen EURO4 und EURO5 sind Bauteilschutz (DPF-Schutz, AGR-Ventilschutz) sowie Fahrzeugverbrauch, Robustheit und Fahrbarkeit vorrangig zu Lasten der Stickoxidbildung gewichtet worden. Dies erklärt das unbefriedigende Stickoxidemissionsverhalten in zahlreichen Betriebszuständen.

Die großen Probleme und Herausforderungen im Bereich Betriebssicherheit (Abgasrückführung, Bauteilschutz Partikelfilter, Ablagerungen im SCR-Trakt, Betriebssicherheit) konnten durch umfangreiche Forschungs- und Entwicklungsarbeiten in den letzten zehn Jahren entschärft werden. Vollumfänglich fließen diese Erkenntnisse vor allem in die modernsten Fahrzeuge ein, die bereits EURO6dTemp vorerfüllen.

Die rasche Einführung der EURO6d-Temp und EURO6 Gesetzgebung ist sehr zu begrüßen. Bereits die scharfe EURO6d-Temp (CF=2,1) Gesetzgebung wird zu einer Reduzierung der Stickoxidemissionen in der Größenordnung von 80 bis 90% im Realbetrieb im Vergleich zu typischen EURO6a/b Fahrzeugen führen.

Bei den Nutzfahrzeugen ist eine deutliche Reduzierung der Stickoxidemissionen ebenfalls zu verzeichnen. Mit Einführung der EURO6 Gesetzgebung im Jahr 2012 bei den Nutzfahrzeugen und Omnibussen ist der größte Schritt erreicht worden.

Kritisch zu wertende Sachverhalte:

Seit über fünfzehn Jahren emittiert die Fahrzeugflotte im Realbetrieb höhere Stickoxidemissionen als der Grenzwert. Die Reduzierung der Stickoxidemissionen im Realbetrieb konnte nicht den gleichen Stellenwert wie die CO₂-Reduzierung, die Optimierung des Fahrverhaltens oder die Betriebssicherheit erhalten.

Trotz Rückgang der NO_x-Emissionen sind die nicht explizit limitierten NO₂-Emissionen (Stickoxide werden bislang nur in Summe als NO_x limitiert) über die Jahre aus technischen Gründen weitestgehend konstant geblieben.

Aufgrund des EURO4 und EURO5 NO_x-Grenzwertes (250 oder 180 mg/km) war eine Grenzwerteinhaltung zu keinem Zeitpunkt der Entwicklung in der Mitte der 2000er Jahre mit der damals vorliegenden Technologie in der Großserie, über die Fahrzeugflotte hinweg und vor allem im gesamten Betriebsbereich ganzheitlich zu erreichen! Die Stickoxidabgasnachbehandlung war nicht für eine Flottenanwendung verfügbar. Die Anforderung "niedrige innermotorische Stickoxidemissionen" ist nicht mit den weiteren motorischen Anforderungen Bauteilrobustheit, Betriebssicherheit, Fahrzeugverbrauch, Fahrverhalten im gesamten Betriebskennfeld in Einklang zu bringen gewesen. Vor allem der EURO5 Gesetzeskompromiss ist ein Widerspruch, der mit der damaligen Technologie an technische Grenzen stößt. Zur Realisierung einer Lösung musste eine Anforderung reduziert werden – die Wahl musste leider zwangsläufig auf erhöhte Stickoxidemissionen fallen.

Aufgrund der Grauzone zwischen Unerfüllbarkeit im höheren Lastbereich und Notwendigkeit der NEFZ-Testerfüllung in niedrigen Lastbereich wurde die NO_x-Einhaltung also in Richtung "ausschließliche NO_x-Erfüllung im Test" reduziert. Nur so konnten die anderen komplexen und anspruchsvollen Anforderungen (s.oben) eingehalten werden.

Hierbei sind nun entweder aus meiner Sicht legale – jedoch unbefriedigende - Abschaltbedingungen zum Einsatz gekommen oder als illegale Alternative eine Zykluserkennung (defeat device). Die NO_x -Emissionswirkung beider Ansätze ist vergleichbar. Gleichwohl ist zu beachten, dass der "schwarze Peter" bei den Thermodynamikentwicklungen landete, die mit der Gesetzgebung in einer Zwangslage waren und daher den gesetzlichen Minimalanspruch "ausschließliche Entwicklung hinsichtlich NEFZ-Randbedingungen" als Entwicklungsziel wählen mussten.

Mit der zunehmend fokussierten Entwicklung "ausschließlich auf NEFZ" entstand eine skalpellartig entwickelte NO_x-Erfüllungsstrategie nur und haarscharf im Testzyklus. Der Bogen bei der Auslegung der Stickoxidemissionsgestaltung im Realbetrieb ist bei einigen EURO4/5 Modellen sicherlich überspannt.

Mit Einführung der Emissionsnorm EURO6a/b und einer typischerweise hiermit einhergehenden Stickoxidabgasnachbehandlung wäre eine weitere Reduktion im Realbetrieb deutlich unterhalb von 500mg/km für viele Anwendungsfälle möglich. Spitzenemissionswerte deutlich darüber (bis über 1000mg/km) sind für EURO6 PKW-Fahrzeuge mit NO_x-Abgasnachbehandlung inakzeptabel und torpedieren den technologischen Fortschritt.

Schlussbemerkungen:

Die Lücke zwischen Real-NO_x-Emission und Grenzwert muss geschlossen werden und ist im Jahr 2016 mit den modernsten Dieselfahrzeugen nach langer Entwicklungszeit geschlossen worden.

Der Immissionsbeitrag des PKW-Diesels an der höchstbelasteten Messstation in der BRD in Stuttgart am Neckartor würde bei einer Vollsubstitution der bisherigen Flotte mit modernsten Fahrzeugen gerade noch $3\mu g/m^3$ (heute ca. $26\mu g/m^3$; Grenzwert $40\mu g/m^3$) und somit weniger als 10% vom Grenzwert betragen!

Ich rate von einer verpflichtenden Nachbesserung der EURO4 und EURO5 Altfahrzeuge, so hart es klingt, ab. Fahrzeuge mit Zykluserkennung emittieren teilweise weniger Emissionen als andere Fahrzeuge, die mit Bauteilschutzfunktionen appliziert sind.

Eine wesentliche Verbesserung des Gesamtkompromisses ist bei EURO4 und EURO5 nicht zu erzielen. Aufwand, Kosten und somit kapazitätsbedingte Entwicklungsumfänge, die eine Weiterentwicklung zukünftiger Technologien (Hybride, Verbrauchsmaßnahmen, Kosten, ...) behindern, sind exorbitant.

Bei berechtigter Kritik an den meisten Herstellern vor allem wegen der minimalistischen Gesetzesauslegung ist vor allem durch die gesetzlichen Vorgaben eine unbefriedigende Situation entstanden. Weder waren die NO_x-Emissionsergebnisse (EURO4, EURO5) im Realbetrieb zu erreichen. Dies war technisch nicht möglich. Kein Fahrzeug konnte dies mit der flächendeckend vorliegenden EURO4/5 Technologie erfüllen. Zudem waren die Erwartungen an das Emissionsverhalten im Realbetrieb derart unpräzise definiert, dass von keinem Zwang zur Emissionseinhaltung unter realen Fahrbedingungen gesprochen werden kann.

Bei EURO6a/b Fahrzeugen mit NO_x-Abgasnachbehandlung empfehle ich eine Bewertung mit Augenmaß. Emissionen sogar oberhalb von 1000mg/km sind indiskutabel.

Aus Immissionssicht anzuregen ist insgesamt eine schnelle Marktpenetration der neuen EURO6d-Temp Modelle (RDE-konform), die zu einer schnelleren Entlastung der NO_x-Immissionswerte führen werden. Ich plädiere für eine strenge, warne jedoch zugleich vor einer überzogenen weiteren Regulierung der Dieselemissionen (extreme Kaltstartforderungen etc.).

Der Diesel ist auch nach Aussagen des Umweltbundesamtes ([39] Abbildung 15-18) noch immer und nach meiner Einschätzung auch noch lange der umweltfreundlichste Antrieb.

Karlsruhe, den 5. September 2016

(Prof. Dr. sc. techn. Thomas Koch)

Verweise

- [1] LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, "Luftreinhaltepläne für Baden-Württemberg," LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe, 2013.
- [2] European Environment Agency, "Air Quality in Europe," European Environment Agency, 2015.
- [3] C. Hak, S. Larssen, S. Randall, C. Guerreio und B. Denby, "Traffic and Air Quality Contribution of Traffic to Urban Air Quality in European Cities," 2010.
- [4] P. Kumar, L. Pirjola, M. Ketzel und R. M. Harrison, "Nanoparticle emissions from 11 nonvehicle exhaust sources A review.," *Atmospheric Environment*, Nr. 67, pp. 252-277, 2013.
- [5] A. Dahl, A. Gharibi, A. Swietlicki, A. Gudmundsson, B. Bohgard, A. Ljungman, G. Blomqvist, M. Gustafsson und E. Swietlicki, "Traffic-generated emissions of ultrafine particles from pavement-tire interface," *Atmospheric Environment*, Bd. 40, Nr. 7, pp. 1314-1323, 2006.
- [6] T. Koch und U. Gärtner, "Interaktion zwischen thermodynamischen Prozessgrößen des NFZ-Motors und charakteristischen Anforderungen der AGN am Beispiel der Sauerstoffkonzentration," in Heavy-Duty On- Off Highway Tagung, 2008.
- [7] Z. f. Technomathematik, "Erweiterung und Parameteroptimierung eines Abgastemperaturmodells," 2008. [Online]. Available: http://www.math.unibremen.de/zetem/cms/detail.php?id=5551. [Zugriff am 2016].
- [8] I. f. Kolbenmaschinen, Vorlesung Verbrennungsmotoren, Karlsruhe: KIT, 2015.
- [9] Motor-Talk, "Motor-Talk Europas größte Auto- und Motor-Community," [Online]. Available: http://www.motor-talk.de/. [Zugriff am 2016].
- [10] "Amtsblatt der Europäischen Union Richtlinie 98/69/EG".
- [11] J. Dings, "Mind the Gap! Why official car fuel economy figures don't match up to reality," Transport and Environment (T&E), 2013.
- [12] E. Inc., "Worldwide Harmonized Light Vehicles Test Procedure (WLTP)," Ecopoint Inc., 2016. [Online]. Available: https://dieselnet.com/standards/cycles/wltp.php.
- [13] Umweltbundesamt, "Stickstoffoxid-Emissionen," Umweltbundesamt, 20 06 2016. [Online]. Available: http://www.umweltbundesamt.de/en/node/15675.
- [14] Bundesministerium für Verkehr und digitale Infrarstruktur, "Verkehr in Zahlen," DVV Media Group GmbH, Hamburg, 2015/2016.
- [15] A. Kufferath, D. Naber und M. Krüger, "Der Dieselmotor kann mehr als die Realemissionen für Stickoxide erfüllen," in *Motorische Stickoxidbildung:*, Heidelberg, 2016.
- [16] M. u. N. B.-W. LUBW Landesanstalt für Umwelt, "PEMS-Messungen an drei EURO6-Diesel-Pkw auf Streckenführungen in Stuttgart und München sowie Außerortsstrecken," LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe, 2015.
- [17] dg, "BMW und VW gut, Renault und Volvo schlecht," *Auto Motor und Sport,* Bd. 17, p. 13, 2016.
- [18] DEKRA Automobil GmbH, "Prüfung eines Fahrzeuges hinsichtlich der Emissionen während realer Straßenfahrten," DEKRA, Klettwitz, 2016.
- [19] R. Godwill, "Vehicle Emissions Testing Moving Britain ahead," Department for Transport, London, 2016.
- [20] "ADAC Fahrzeugtechnik," 01 2016. [Online]. Available: https://www.adac.de/_mmm/pdf/EcoTest%20Bewertungskriterien_118924.pdf. [Zugriff am 08 2016].
- [21] M. Keller, "Handbuch Emissionsfaktoren des Straßenverkehrs, HBEFA / UBA," Berlin, 1999.
- [22] TU Graz, "HBEFA 3.2: Update of Emission Factors for EURO 5 and EURO 6 vehicles for the HBEFA Version 3.2," 2013.
- [23] INFRAS, [Online]. Available: http://www.hbefa.net/Tools/DE/MainSite.asp. [Zugriff am 08 2016].
- [24] M. Roehrleef, "Zusammenbringen was zusammen gehört: CarSharing und," in Der 6. ÖPNV-Innovationskongress, 2013.
- [25] H.-O. Herrmann und U. Gärtner, "Bildung und Reduktion der Stickoxide bei Nfz-

- Dieselmotoren," in *Motorische Stickoxidbildung Nachhaltige Mobilität in Städten und im Fernverkehr*, Heidelberg, 2016.
- [26] Umweltbundesamt, "Luftschadstoffbelastung in Deutschland," GISU Geographisches Informationssystem Umwelt, 2016. [Online]. Available: http://gis.uba.de/Website/luft/index.html.
- [27] T. Koch, "Langfristige Potenziale des Verbrennungsmotors," in 13. FAD- Konferenz "Herausforderung Abgasnachbehandlung für Dieselmotoren", Dresden, 2015.
- [28] A. f. U. L. Stuttgart, "NO2 und PM10 Grafiken 2004 2015 Stadtklima Stuttgart," Abteilung Stdtklimatologie, 2015. [Online]. Available: www.stadtklimastuttgart.de/stadtklima filestorage/.../NO2-und-PM10 2004-2015.pdf.
- [29] LUBW, Messorte Spotmessung, persönliche Kommunikation, 2016.
- [30] Peel, "Is NO2 a Marker for Effects of Traffic Pollution or a Pullutant on its own," in *HEI annual Meeting*, Philadelphia, 2015.
- [31] C. Schneider, A. Niederau, M. Nacken und M. Rau, "Wirkungsabschätzung weiterer Maßnahmen für den Ballungsraum Stuttgart," LUBW Landesanstalt für Umwelt, Messungen und Naturschutz, Karlsruhe, 2015.
- [32] General Directorate of Sustainability, "Madrid's Air Quality Plan 2011-2015," Government Division of Environment, Safety and Mobility; Madrid City Council, Madrid, 2012.
- [33] Grüneautos.com, "DUH fordert Kontrollen von Angaben zum Spritverbrauch," 03 2015. [Online]. Available: http://www.grueneautos.com/2015/03/duh-fordert-kontrollen-von-angaben-zum-spritverbrauch/.
- [34] I. Newsletter, U. Tietge, Z. Nikiforos, P. Mock, V. Franco, G. John, A. Bandivadekar, N. Ligterink und U. Lambrecht, "Kraftstoffverbrauch und CO2-Emissionen neuer Pkw in der EU Prüfstand versus Realität," International Council on Clean Transportation, Berlin, 2015.
- [35] U. Spicher und T. Matousek, "Energiebedarf und CO2-Emissionen von konventionellen und neuen Kraftfahrzeugantrieben unter Alltagsbedingungen," in *Der Antrieb von morgen 9. MTZ-Fachtagung*, 2014.
- [36] "Herstellerverbrauch vs ADAC Eco Test-Verbrauch," [Online]. Available: https://www.adac.de/ mmm/pdf/Verbrauch%20zu%20hoch%206 254077.pdf.
- [37] European Environment Agency, "EU progress in meeting emission ceilings set out in the NECD Annexes I and II," EEA, Copenhagen, 2016.
- [38] K. Bhalla, M. Shotten, A. Cohen, M. Brauer, S. Shahraz, R. Burnett, K. Leach-Kemon, G. Freedman und C. J. Murray, "Transport for health: the global burden of disease from motorized road transport," Institute of Health Metrics and Evaluation / The World Bank, Seattle, 2014.
- [39] DOJ und EPA, "DOJ, EPA announce one billion dollar settlement with Diesel engine industry for clean air violations," 10 1998. [Online]. Available: https://www.justice.gov/archive/opa/pr/1998/October/499 enr.htm.
- [40] Spiegel, "Neuer Abgastest: Die dreckige Wahrheit über Dieselautos," Spiegel ONLINE, 04 09 2015. [Online]. Available: http://www.spiegel.de/auto/aktuell/abgastest-wltp-die-dreckige-wahrheit-ueber-dieselautos-a-1051073.html.
- [41] H. Helms, J. Jöhrens, C. Kämper, J. Giegrich, A. Liebich, R. Vogt und U. Lambrecht, "Weiterentwicklung und vertiefte Analyse der Umweltbilanz von Elektrofahrzeugen," Umweltbundesamt, Dessau, 2016.